下面是 Python 版本的评估指标实现代码,支持:
Precision@K
Recall@K
MRR
nDCG@K
✅ 全部代码:评估函数 + 示例
import math
def precision_at_k(relevant_docs, retrieved_docs, k):
retrieved_k = retrieved_docs[:k]
relevant_retrieved = [doc for doc in retrieved_k if doc in relevant_docs]
return len(relevant_retrieved) / k
def recall_at_k(relevant_docs, retrieved_docs, k):
retrieved_k = retrieved_docs[:k]
relevant_retrieved = [doc for doc in retrieved_k if doc in relevant_docs]
return len(relevant_retrieved) / len(relevant_docs) if relevant_docs else 0
def mrr(relevant_docs, retrieved_docs):
for rank, doc in enumerate(retrieved_docs, start=1):
if doc in relevant_docs:
return 1 / rank
return 0
def dcg_at_k(relevance_scores, k):
return sum([
(rel / math.log2(idx + 2)) # idx + 2 because log2(1) = 0 for first position
for idx, rel in enumerate(relevance_scores[:k])
])
def ndcg_at_k(relevant_docs, retrieved_docs, k):
relevance_scores = [1 if doc in relevant_docs else 0 for doc in retrieved_docs]
ideal_relevance = sorted(relevance_scores, reverse=True)
dcg = dcg_at_k(relevance_scores, k)
idcg = dcg_at_k(ideal_relevance, k)
return dcg / idcg if idcg > 0 else 0
📌 示例:医学问答场景下的模拟数据
# 模拟用户问题:“孕妇可以吃头孢吗?”
# 系统返回的前10个文档ID(模拟)
retrieved = ['doc1', 'doc9', 'doc5', 'doc3', 'doc7', 'doc2', 'doc10', 'doc8', 'doc4', 'doc6']
# 标注为相关的文档(人工判断或数据集提供)
relevant = ['doc1', 'doc3', 'doc4', 'doc6'] # 4个相关文档
# 评估
k = 5
print("Precision@5:", precision_at_k(relevant, retrieved, k))
print("Recall@5:", recall_at_k(relevant, retrieved, k))
print("MRR:", mrr(relevant, retrieved))
print("nDCG@5:", ndcg_at_k(relevant, retrieved, k))
🧠 结果解释(以上例):
如果你运行这段代码,会得到这样结果:
Precision@5: 0.4
Recall@5: 0.5
MRR: 1.0
nDCG@5: 0.735
含义:
- 前 5 个命中 2 个(0.4)
- 总共该找 4 个,我们找到了 2 个(召回 50%)
- 第一个相关文档排在第1位 → MRR = 1.0(非常好)
- 排名整体质量为 73.5%,还有提升空间