AutoTokenizer 和SemanticSplitterNodeParser 都和“文本的切分”有关,但它们处理粒度不同、使用目的不同、来源逻辑也不同

示例代码(部分):

from llama_index.core.node_parser import SemanticSplitterNodeParser
from transformers import AutoTokenizer
  
def _setup_semantic_chunking(self, embedding_model_name):
    if embedding_model_name:
        self.embedding_model_name = embedding_model_name

    self.embed_model = HuggingFaceEmbedding(
        model_name=self.embedding_model_name,
        trust_remote_code=True,
        embed_batch_size=1,
    )
    self.splitter = SemanticSplitterNodeParser(
        embed_model=self.embed_model,
        show_progress=False,
    )
# Get semantic nodes
nodes = [
    (node.start_char_idx, node.end_char_idx)
    for node in self.splitter.get_nodes_from_documents(
        [Document(text=text)], show_progress=False
    )
]

# Tokenize the entire text
tokens = tokenizer.encode_plus(
    text,
    return_offsets_mapping=True,
    add_special_tokens=False,
    padding=True,
    truncation=True,
)
token_offsets = tokens.offset_mapping

两个变量 nodestoken_offsets 都和“文本的切分”有关,但它们处理粒度不同、使用目的不同、来源逻辑也不同


✅ 1. nodes 是什么?

nodes语义切割后的“文本片段的起止位置”,通常基于语义信息切分出来的段落、句子、子句。

nodes = [
    (node.start_char_idx, node.end_char_idx)
    for node in self.splitter.get_nodes_from_documents([Document(text=text)])
]

这个结果通常像:

[(0, 15), (16, 42), (43, 60)]

它的意思是:

  • 第一个节点是从第 0 到 15 个字符(text[0:15])
  • 第二个节点是从第 16 到 42 个字符(text[16:42])

🔹核心点:

  • 粒度是“句子”或“语义片段”
  • 基于语义模型(如 Sentence-BERT)判断哪里断句合理,不按标点
  • 是用于做语义搜索、文档拆分等任务的输入块(比如做检索的 Chunk)

✅ 2. token_offsets 是什么?

这是 tokenizer 返回的 每个 token 在原始字符里的起止位置

tokens = tokenizer.encode_plus(
    text,
    return_offsets_mapping=True,
)
token_offsets = tokens.offset_mapping

示例输出可能是:

[(0, 2), (2, 5), (6, 8), (8, 10), (10, 11)]

代表:

  • 第一个 token 是 text[0:2]
  • 第二个 token 是 text[2:5]

🔹核心点:

  • 粒度是“token”,就是 BERT 中的词片段(像 “天气很好” 会被分成 [“天气”, “很”, “好”])
  • 是用于模型输入的 token 对齐
  • 可以把 token 与原文字符一一对齐(做高亮、span mapping 等非常有用)

✅ 总结对比:

项目nodestoken_offsets
目标语义片段起止位置(用于分段)每个 token 在原文中位置
粒度段 / 句子 / 子句(高层语义)token / 字符片段(细节)
来源SemanticSplitter.get_nodes_from_documents()tokenizer.encode_plus(..., return_offsets_mapping=True)
应用场景文档切块、索引、摘要、检索映射 token → 原文、对齐字符、做高亮

✅ 举个例子

文本:

"今天天气很好,我想出去玩。"
  • nodes 返回:

    [(0, 8), (9, 16)]  # 两个语义句子
    
  • token_offsets 返回:

    [(0, 2), (2, 4), (4, 6), (6, 8), (8, 9), (9, 11), (11, 13), (13, 16)]
    # 每个 token 对应字符位置
    

💡 nodestoken_offsets 的区别和联系:

项目nodestoken_offsets
来自SemanticSplitterNodeParser.get_nodes_from_documents()tokenizer.encode_plus(..., return_offsets_mapping=True)
单位语义段落(语义切割)分词(token 切割)
结果返回每段文字的字符范围(start_char_idx, end_char_idx)返回每个 token 在原文中对应的字符偏移(start, end)
用途构建语义一致的 chunk,提升向量检索/摘要效果编码成模型输入,训练或推理用
粒度更大(按段落或语义组)更小(按词或子词)

🔍 举例说明

假设文本是:

text = "今天天气很好,我想出去玩。"
token_offsets(由 tokenizer 提供):

它可能会输出类似下面的字符位置偏移(以字为单位的起止):

[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)]
# 即:['今', '天', '天', '气', '很', '好', ...]

每个 tuple 表示一个 token 对应的原始文本位置(start, end)。

nodes(由语义分段器提供):

它可能会给出:

[(0, 6), (6, 9)]
# 表示第1段是 "今天天气很好",第2段是 "我想出去玩"

🧠 总结联系

  • token_offsets 是为了精确对齐模型输入和原文,比如训练模型、生成注意力掩码时使用。
  • nodes 是为了找到语义上更合理的切割点,适合用于文本检索(像向量数据库的 chunk)、长文摘要等。
  • 二者都是基于字符位置工作的,token 是低层编码单位,node 是高层语义单位

nodestoken_offsets 的索引计算都是基于原始文本中的字符位置(character offset)来进行的。但它们的粒度和目标不同。我们来具体说人话解释一下。


✅ 共同点:都基于字符位置(character offset)

无论是:

  • node.start_char_idx, node.end_char_idx (语义切割)
  • tokenizer.encode_plus(..., return_offsets_mapping=True) 中的 offset_mapping

它们都表示在原始文本字符串中,从第几个字符到第几个字符

例如,假设:

text = "今天天气很好,我想出去玩。"012345678901234567

某个 offset 是 (0, 4) 就表示:从第 0 个字符到第 4 个字符,也就是 "今天天气"


🔍 不同点:切割目标不同

项目切割目的粒度假设 offset 为 (0, 6) 意思是
token_offsets把句子切成“词片”或子词,让模型能理解字、词,甚至词的一部分(子词)第一个 token 是 "今天天气"
nodes把整段文本按语义“逻辑分段”,提升语义检索准确性按句子/段落/主题段落第一个语义块是 "今天天气很好"

🎯 举个实际例子

比如你想把一篇医学问答切块:

病人:我咳嗽一周了,还发烧怎么办?
医生:建议做个肺部CT,排除肺炎。注意多喝水。
nodes 会切成两段:
[
  (0, 17),   # “病人:我咳嗽一周了,还发烧怎么办?”
  (17, 41)   # “医生:建议做个肺部CT,排除肺炎。注意多喝水。”
]
token_offsets 会切出细粒度:
[
  (0, 2), (2, 3), (3, 5), ..., (16, 17), ...  # 每个词/字
]

✅ 所以结论:

  • 两者索引方式都是以字符位置为基础的(start_char, end_char)
  • token_offsets让 BERT 等模型更好理解原文
  • nodes为了切割成合适语义片段,给后续 embedding 用

如果你想“把 token 和 node 的切割对齐”,就可以通过字符 offset 把它们统一起来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值