两种求模m逆元的方法


在a|b(a能整除b)的前提下,计算(b/a)mod m的时候转化为 计算(b*x)mod m ; 这时的x就是a的逆元(a模m的逆元);

                                此时x满足  (a*x mod m == 1);    


这个x的求法有一下两种:


1)扩展欧几里得算法求解 a*x+m*y=1;  因为 a*x mod m == 1   <=>  a*x=1+m1*y   <=>  a*x+m*y==1 ( m=-m1 )。

LL ExGcd(LL a,LL b,LL &x,LL &y){
	if(!b)
	{
		x=1;
		y=0;
		return a;
	}
	LL ans=ExGcd(b,a%b,x,y);
	LL temp=x;
	x=y;
	y=temp-a/b*y;
	return ans;
}
LL getInverse(LL a,LL p)//a模n的乘法逆元
{
	if(__gcd(a,p)!=1)
		return -1;
	LL x,y;
	ExGcd(a,p,x,y);
	return (x+p)%p;
}



2)如果有gcd(a,m)==1 ,即a,m互质,则a^(m-1) mod m==1 (这个定理在此不证明,有兴趣去搜)  ;  所以  [ a^(m-2) ] mod m 等价于 a^(-1) ;

      此时a的逆元就是a^(-1)=x = [ a^(m-2) ] mod m 。

LL qpowMod(LL m,LL n,LL p)
{
	LL ans=1;
    LL temp=m;
    while(n>0)
    {
        if(n&1)
            ans=ans*temp % p;
        temp=temp*temp % p;
        n>>=1;
    }
    return ans;
}
LL _getInverse(LL a,LL p)
{
	return qpowMod(a,p-2,p);
}



此外 当a,m不是互质数,计算(b/a)mod m,没办法把b/a转换成b×(a的逆元),可以用  (b/a)mod m == [ b mod (a*m) ] / a 来代替。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值