-
题目描述:
-
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2...b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
-
输入:
-
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
-
输出:
-
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
-
样例输入:
-
2 1 92
-
样例输出:
-
15863724 84136275
#include <stdio.h>
#include <string.h>
#include <vector>
#include <algorithm>
using namespace std;
#define maxnsize 25
vector<string> ans;
bool vis[4][maxnsize];
int sta[maxnsize];
int n;
void search( int x)
{
if( x == 8)
{
string str;
for( int i = 0; i<8; i++)
str += ('0' + sta[i] + 1);
ans.push_back(str);
return ;
}
for( int i = 0; i<8; i++)
{
if( !vis[0][i] && !vis[1][x + i] && ! vis[2][i - x + 8])
{ sta[x] = i;
vis[0][i] = vis[1][x + i] = vis[2][i - x + 8] = true;
search( x + 1);
vis[0][i] = vis[1][x + i] = vis[2][i - x + 8] = false;
}
}
return ;
}
int main()
{
int n,t;
ans.clear();
memset(sta, 0, sizeof(sta));
memset(vis, 0, sizeof(vis));
search(0);
// cout<<ans.size()<<endl;
sort(ans.begin(), ans.end());
vector<string> :: iterator it;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
it = ans.begin();
cout<<*(it+n - 1)<<endl;
}
return 0;
}