MA时间序列模型,即移动平均(Moving Average, MA)模型,是时间序列分析中的一种重要模型。其原理主要基于以下几点:
一、基本思想
MA模型的基本思想是通过当前及过去的随机误差项(或称为白噪声项)的线性组合来描述时间序列的当前值。这种模型特别适用于那些序列中的随机波动较为显著,且这些随机波动之间存在一定依赖关系的情况。
二、模型结构
MA模型的数学表达式通常为:
X t = μ + ε t + θ 1 ε t − 1 + θ 2 ε t − 2 + … + θ q ε t − q X_t = \mu + \varepsilon_t + \theta_1\varepsilon_{t-1} + \theta_2\varepsilon_{t-2} + \ldots + \theta_q\varepsilon_{t-q} Xt=μ+εt+θ1εt−1+θ