MA时间序列模型原理及Python实践

MA时间序列模型,即移动平均(Moving Average, MA)模型,是时间序列分析中的一种重要模型。其原理主要基于以下几点:

一、基本思想

MA模型的基本思想是通过当前及过去的随机误差项(或称为白噪声项)的线性组合来描述时间序列的当前值。这种模型特别适用于那些序列中的随机波动较为显著,且这些随机波动之间存在一定依赖关系的情况。

二、模型结构

MA模型的数学表达式通常为:

X t = μ + ε t + θ 1 ε t − 1 + θ 2 ε t − 2 + … + θ q ε t − q X_t = \mu + \varepsilon_t + \theta_1\varepsilon_{t-1} + \theta_2\varepsilon_{t-2} + \ldots + \theta_q\varepsilon_{t-q} Xt=μ+εt+θ1εt1+θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值