BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies)算法是一种高效的层次聚类算法,它特别适合于处理大规模数据集,旨在减少大数据聚类问题的计算复杂性,同时不牺牲聚类质量。BIRCH算法的核心在于使用一种特殊的数据结构——聚类特征树(Clustering Feature Tree,简称CF Tree)来实现数据的压缩和有效聚类。以下是对BIRCH算法原理的详细解释:
一、BIRCH算法的基本思想
BIRCH算法通过扫描数据库,建立一个初始存放于内存中的聚类特征树(CF Tree),然后对聚类特征树的叶节点进行聚类。其核心在于聚类特征(Clustering Feature,简称CF)和聚类特征树(CF Tree)的使用。
二、聚类特征(CF)
聚类特征CF是一个三元组,表示为(N, LS, SS),其中:
- N:簇中d维点的数目。
- LS:N个点的线性和,即这些样本点在各个特征维度上的和向量。
- SS:N个点的平方和,即每个特征维度上样本点平方和的总和。
CF结构概括了簇的基本信息,并且是高度压缩的,它存储了小于实际数据点的聚类信息。CF的三元结构设置使得计算簇的半径、簇的直径、簇与簇之间的距离等非常容易。
三、聚类特征树(CF Tree)
CF Tree是一种类似于平衡B+树的数据结构,用于存储CF。CF Tree的每个节点(包括叶子节点)都包含若干个CF,而内部节点的CF还包含指向孩子节点的指针。所有的叶子节点用一个双向链表链接起来。CF Tree的重要参数包括:
- 每个内部节点的最大CF数B。
- 每个叶子节点的最大CF数L。
- 叶节点每个CF的最大样本半径阈值T。
四、CF Tree的构建过程
- 初始化:CF Tree最初是空的。
- 插入数据点:
- 从根节点开始,找到与新数据点距离最近的叶子节点和该叶子节点中最近的CF。
- 如果新数据点能够加入该CF而不超过预设的半径阈值T,则更新该CF的三元组值,并向上更新路径上所有CF的三元组值。
- 如果当前叶子节点的CF数量已达到上限L,但可以通过增加新的CF来容纳新数据点而不超过T,则创建新的CF。
- 如果上述条件均不满足,则需要分裂当前叶子节点或其父节点,甚至更高层次的节点,以确保所有数据点都能被正确插入。
3.分裂节点:
- 节点分裂时,会选取节点内相距最远的两个CF作为种子点。
- 根据其他CF到这两个种子点的距离,将节点内的CF重新分配到两个新的节点中。
- 分裂过程可能会向上传播到根节点,导致整个CF Tree的重新调整。
五、BIRCH算法的流程
- 建立CF Tree:将所有的样本依次读入,在内存中建立一颗CF Tree。
- 可选步骤:
- 筛选CF Tree,去除一些异常CF节点。
- 利用其他聚类算法(如K-Means)对所有的CF元组进行聚类,得到一颗更好的CF Tree。这一步旨在消除由于样本读入顺序导致的不合理的树结构,以及一些由于节点CF个数限制导致的树结构分裂。
- 利用上一步生成的CF Tree的所有CF节点的质心作为初始质心点,对所有的样本点按距离远近进行聚类。这一步进一步减少了由于CF Tree的一些限制导致的聚类不合理的情况。
六、BIRCH算法的特点
- 高效性:BIRCH算法只需要单遍扫描数据集就能进行聚类,大大提高了聚类效率。
- 可扩展性:通过CF Tree的压缩和概括能力,BIRCH算法能够处理大规模数据集。