0-1
A = { i + ( 5 i ) , i ∈ Z 且 0 ≤ i ≤ 4 } A=\{i+\binom{5}{i},i\in\Z且0 \le i \le 4\} A={i+(i5),i∈Z且0≤i≤4}
B = { 3 i ∣ i ∈ { 1 , 2 , 4 , 5 } } B=\{3i|i\in\{1,2,4,5\}\} B={3i∣i∈{1,2,4,5}}
化简可得
A={1,6,12,13,9}
B={3,6,12,15}
(a) A ∩ B A\cap B A∩B
{6,12}
(b) ∣ A ∪ B ∣ |A\cup B| ∣A∪B∣
|{1, 3, 6, 9, 12, 13, 15}|=7
© ∣ A − B ∣ |A-B| ∣A−B∣
|{1, 13, 9}|=3
0-2
X为随机数,代表抛硬币3次,正面朝上的次数。
Y为随机数,代表投掷两个6面骰子,两个骰子的乘积。请计算下面期望值。
(a) E[X]
0 : 1 8 0:\frac {1} {8} 0:81, 1 : 3 8 1:\frac {3} {8} 1:83, 2 : 3 8 2:\frac {3} {8} 2:83, 3 : 1 8 3:\frac {1} {8} 3:81
1.5
(b) E[Y]
乘积 | 概率 |
---|---|
1 | 1/36 |
2 | 2/36 |
3 | 2/36 |
4 | 3/36 |
5 | 2/36 |
6 | 4/36 |
8 | 2/36 |
9 | 1/36 |
10 | 2/36 |
12 | 4/36 |
15 | 2/36 |
16 | 1/36 |
18 | 2/36 |
20 | 2/36 |
24 | 2/36 |
25 | 1/36 |
30 | 2/36 |
36 | 1/36 |
(1+4+6+12+10+24+16+9+20+48+30+16+36+40+48+25+60+36)/36=12.25
©E[X+Y]
E[X+Y]=E[X]+E[Y]=13.75
0-3
A=600/6, B=60 mod 42
(a) A ≡ B ( m o d 2 ) A\equiv B(mod 2) A≡B(mod2)
true
(B) A ≡ B ( m o d 3 ) A\equiv B(mod 3) A≡B(mod3)
false
(B) A ≡ B ( m o d 4 ) A\equiv B(mod 4) A≡B(mod4)
false
0-4
推断法证明:当 n ≥ 1 , ∑ i = 1 n i 3 = [ n ( n + 1 ) 2 ] 2 n\ge1,\sum_{i=1}^{n}i^3=[\frac {n(n+1)}{2}]^2 n≥1,∑i=1ni3=[2n(n+1)]2
当n=1时, ∑ i = 1 n i 3 = 1 , [ n ( n + 1 ) 2 ] 2 = 1 \sum_{i=1}^{n}i^3=1,[\frac {n(n+1)}{2}]^2=1 ∑i=1ni3=1,[2n(n+1)]2=1
假设n=k时,等式成立。 ∑ i = 1 k i 3 = [ k ( k + 1 ) 2 ] 2 \sum_{i=1}^{k}i^3=[\frac {k(k+1)}{2}]^2 ∑i=1ki3=[2k(k+1)]2
当n=k+1时,
∑ i = 1 k + 1 i 3 = ∑ i = 1 k i 3 + ( k + 1 ) 3 \sum_{i=1}^{k+1}i^3=\sum_{i=1}^{k}i^3+(k+1)^3 ∑i=1k+1i3=∑i=1ki3+(k+1)3
[ ( k + 1 ) ( k + 2 ) 2 ] 2 = [ k ( k + 1 ) 2 + ( k + 1 ) ] 2 = [ k ( k + 1 ) 2 ] 2 + k ( k + 1 ) 2 + ( k + 1 ) 2 = [ k ( k + 1 ) 2 ] 2 + ( k + 1 ) 3 [\frac {(k+1)(k+2)}{2}]^2=[\frac {k(k+1)} {2}+ (k+1)]^2=[\frac {k(k+1)}{2}]^2+k(k+1)^2+(k+1)^2=[\frac {k(k+1)}{2}]^2+(k+1)^3 [2(k+1)(k+2)]2=[2k(k+1)+(k+1)]2=[2k(k+1)]2+k(k+1)2+(k+1)2=[2k(k+1)]2+(k+1)3
0-5
通过推断证实:每个连接的无向图G=(V,E),当|E|=|V|-1时,它是无环的。
解:基于k个顶点推断。基本情形:包含1个点、0条边的图是无环的。
现在对于任意连通图(有k个点、k-1条边),假设这种情形时推断为真,考虑任意连通图G(有k+1个点、k条边)。G是连通的,因此每个点至少连了1条边。因为k条边中,每个都连接两个点,G中点的平均度是 2 k / ( k + 1 ) < 2 2k/(k+1)<2 2k/(k+1)<2,因此至少存在一个点v,其度为1,连接着一个点u。移除v和连接v、u的边,得到图G’‘(有k个点、k-1条边,也是连通的)。点v不在图G的任何环中,因为环中的点,其度至少为2,因此仅当G’‘包含环时,G包含环。通过归纳假说,G’'是无环的,因此G也是。
0-6
整数数组的升序子数组,是整数数组的连续序列(值升序)。写python函数count_long_subarrays(A),接受Python数组(Tuple)A=( a 0 , a 1 , . . . , a n − 1 a_0,a_1,...,a_{n-1} a0,a1,...,an−1),n>0个正数,返回A中最长升序子数组的数量,最长升序子数组的元素个数,至少比每个其它升序子数组的元素个数多。例如,如果A=(1,3,4,2,7,5,6,9,8),你的程序应该返回2,因为A中升序子数组的最大长度为3,有两个升序子数组有该数量的元素,子数组:(1,3,4)和(5,6,9)。
def count_long_subarrays(A):
longest,length,num = 1,0,0
last = A[0]
for item in A:
if item >= last:
length += 1
if length > longest:
longest = length
num = 1
elif length == longest:
num += 1
else:
length = 1
last = item
return num
if __name__ == "__main__":
A = (1,3,4,2,7,5,6,9,8,9,10)
print(count_long_subarrays(A))