题目大意就是说,一共有n个点,分布在不同层,每层有一些点【有可能一层有多个点,但是同一层的点不一定直接相连】,在k层的点去k-1层和k+1层的花费都是c【即k层的点到k+1(k-1)层的每个点的花费都是c】;另外再给出m条无向边,u和v花费w【u和v可能同层也可能不同层】。求点1到点n的最小花费。
每层虚拟两个点,一个出层的点,一个入层的店,然后入点去该层的所有点花费都是0,该层所有点去出点花费都是0,然后k层出点单向去k+1层的入点和k-1层入点。【关于层与层之间的边,虽然建双向有点多此一举,可是这样做wa了。。何解??】
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = 201010;
const int maxm = 801010;
const int inf = 0x3f3f3f3f;
typedef struct Edge
{
int u, v, dis, pre;
}ee;
typedef struct Node
{
int id, dis;
bool operator <(const Node &argu) const
{
return argu.dis < dis;
}
}nn;
ee line[maxm];
int n, m, c, maxe, maxl;
int pre[maxn], dis[maxn];
bool vis[maxn];
priority_queue<nn> q;
void add_edge(int u, int v, int d)
{
maxe++;
line[maxe].u = u;
line[maxe].v = v;
line[maxe].dis = d;
line[maxe].pre = pre[u];
pre[u] = maxe;
}
void dijkstra()
{
nn now, next;
now.id = 1, now.dis = 0;
dis[1] = 0;
q.push(now);
while(!q.empty())
{
now = q.top();
q.pop();
if(vis[now.id])
continue;
vis[now.id] = true;
for(int k = pre[now.id]; k; k = line[k].pre)
{
if(dis[line[k].u] + line[k].dis < dis[line[k].v])
{
dis[line[k].v] = dis[line[k].u] + line[k].dis;
next.id = line[k].v;
next.dis = dis[line[k].v];
q.push(next);
}
}
}
}
int main()
{
// freopen("4725.in", "r", stdin);
int t;
scanf("%d", &t);
for(int cas = 1; cas <= t; cas++)
{
printf("Case #%d: ", cas);
scanf("%d%d%d", &n, &m, &c);
int la, maxl;
maxl = maxe = 0;
memset(pre, 0, sizeof(pre));
memset(dis, 0x3f, sizeof(dis));
memset(vis, false, sizeof(vis));
for(int i = 1; i <= n; i++)
{
scanf("%d", &la);
maxl = max(maxl, la);
add_edge(i, n + (la << 1), 0);
add_edge(n + (la << 1 | 1), i, 0);
}
for(int i = 1; i <= maxl; i++)
{
add_edge(n + (i << 1), n + ((i + 1) << 1 | 1), c);
// add_edge(n + ((i + 1) << 1 | 1), n + (i << 1), c);
add_edge(n + (i << 1), n + ((i - 1) << 1 | 1), c);
// add_edge(n + ((i - 1) << 1 | 1), n + (i << 1), c);
}
int a, b, cost;
for(int i = 0; i < m; i++)
{
scanf("%d%d%d", &a, &b, &cost);
add_eage(a, b, cost);
add_eage(b, a, cost);
}
dijkstra();
if(dis[n] >= inf)
printf("-1\n");
else
printf("%d\n", dis[n]);
}
return 0;
}