特种浓缩分离:倒极电渗析技术工作原理介绍

倒极电渗析技术利用周期性改变的直流电压实现浓淡水的切换,有效防止膜面结垢,适用于饮用水处理及污水回用。该技术具备低预处理要求、良好耐氯性和高水回收率的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  一、倒极电渗析技术原理

  电渗析技术是一种通过离子在直流电压驱动下透过交替排列的阴阳离子交换膜实现分离的电化学分离过程。倒极电渗析技术则是一种通过周期性改变直流电压的极性来实现浓水流与淡水流的周期性切换的电渗析过程。

  倒极电渗析技术的这种频繁倒极特性可以最大程度地减少膜表面结垢以及胶体物质在膜表面的沉积,破坏新生成的沉积,并在沉积对膜造成危害前将其冲洗掉,从而具有卓越的连续自清洁特征。

  二、倒极电渗析技术特点

  通过对电渗析与倒极电渗析技术的发明者与领导者共同研究,积累了半个多世纪的电渗析与倒极电渗析技术开发与商业应用经验。自从1948年发明离子交换膜以来,于上世纪50年代和70年代先后开发出电渗析与倒极电渗析技术并成功商业化。目前,电渗析与倒极电渗析技术的总装机容量超过80万吨每天,其中包括产量为20万吨每天的位于西班牙巴塞罗那的世界上最大的电渗析厂。

  三、倒极电渗析技术应用领域

  作为主流脱盐技术之一,倒极电渗析技术的早期应用多集中在饮用水处理方面。随着技术的不断进步以及水处理市场需求的不断发展,近十年来,倒极电渗析技术在污水回用领域的应用不断增长,积累了丰富的应用与工程经验。事实上,倒极电渗析技术具有较低的预处理要求、良好的耐氯性与自清洁特性以及更高的水回收率等特点已经在污水回用领域转化为突出的技术优势。

  在石化行业,倒极电渗析技术也在世界多地获得成功应用。例如在俄罗斯下卡姆斯克Tatneft Taneco炼油厂,以一套2万吨每天的倒极电渗析系统为核心,通过与MBR以及RO技术的配合使用,实现了超过90%的系统综合回收率。该系统于2009年年底开始运行至今。

基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码,个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码基于CNN+RNN+G
基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档~ 基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 基于python实现的语音情绪分析+源码+项目文档,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值