梯度下降法的三种形式BGD、SGD以及MBGD

本文介绍了梯度下降法的三种形式:批量梯度下降法(BGD)、随机梯度下降法(SGD)和小批量梯度下降法(MBGD),并分析了各自的优缺点。BGD每次迭代使用所有样本,收敛到全局最优但速度慢;SGD每次迭代仅用一个样本,速度快但可能偏离最优;MBGD折中二者,每次迭代使用部分样本,兼顾速度与准确性。
摘要由CSDN通过智能技术生成

阅读目录

  • 1. 批量梯度下降法BGD

  • 2. 随机梯度下降法SGD

  • 3. 小批量梯度下降法MBGD

  • 4. 总结

在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。

下面我们以线性回归算法来对三种梯度下降法进行比较。

一般线性回归函数的假设函数为:

对应的能量函数(损失函数)形式为:

下图为一个二维参数(θ0和θ1)组对应能量函数的可视化图:

1 批量梯度下降法BGD

 

批量梯度下降法(Batch Gradient Descent,简称BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更新,其数学形式如下:

(1) 对上述的能量函数求偏导:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值