阅读目录
-
1. 批量梯度下降法BGD
-
2. 随机梯度下降法SGD
-
3. 小批量梯度下降法MBGD
-
4. 总结
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。
下面我们以线性回归算法来对三种梯度下降法进行比较。
一般线性回归函数的假设函数为:

对应的能量函数(损失函数)形式为:

下图为一个二维参数(θ0和θ1)组对应能量函数的可视化图:

1 批量梯度下降法BGD
批量梯度下降法(Batch Gradient Descent,简称BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更新,其数学形式如下:
(1) 对上述的能量函数求偏导:

本文介绍了梯度下降法的三种形式:批量梯度下降法(BGD)、随机梯度下降法(SGD)和小批量梯度下降法(MBGD),并分析了各自的优缺点。BGD每次迭代使用所有样本,收敛到全局最优但速度慢;SGD每次迭代仅用一个样本,速度快但可能偏离最优;MBGD折中二者,每次迭代使用部分样本,兼顾速度与准确性。
最低0.47元/天 解锁文章
1366

被折叠的 条评论
为什么被折叠?



