假设球的球心坐标为 O b a l l = { x 0 , y 0 , z 0 } O_{ball}=\{x_0,y_0,z_0\} Oball={ x0,y0,z0},球的半径为 r r r,球的方程为 ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = r 2 (x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2 (x−x0)2+(y−y0)2+(z−z0)2=r2球的一截面的方程为 A x + B y + C z + 1 = 0 Ax+By+Cz+1=0 Ax+By+Cz+1=0该截面为一个空间中的圆,球心 O b a l l = { x 0 , y 0 , z 0 } O_{ball}=\{x_0,y_0,z_0\} Oball={ x0,y0,z0}在截面上的垂足即为空间中圆的圆心。假设圆上的任意三点的坐标分别为 J ( x 1 , y 1 , z 1 ) J(x_1,y_1,z_1) J(x1,y1,z1), K ( x 2 , y 2 , z 2 ) K(x_2,y_2,z_2) K(x2,y2,z2), L ( x 3 , y 3 , z 3 ) L(x_3,y_3,z_3) L(x3,y3,z3),圆心坐标为 P = ( x p , y p , z p ) P=(x_p,y_p,z_p) P=(xp,yp,zp),则球心 O b a l l = { x 0 , y 0 , z 0 } O_{ball}=\{x_0,y_0,z_0\} Oball={ x0,y0,z0}在截面上的投影为 P P P,可以得到下列向量 O b a l l P → = ( x p − x 0 , y p − y 0 , z p − z 0 ) J K → = ( x 2 − x 1 , y 2 − y 1 , z 2 − z 1 ) J L → = ( x 3 − x 1 , y 3 − y 1 , z 3 − z 1 ) \overrightarrow{O_{ball}P}=(x_p-x_0,y_p-y_0,z_p-z_0)\\\overrightarrow{JK}=(x_2-x_1,y_2-y_1,z_2-z_1)\\\overrightarrow{JL}=(x_3-x_1,y_3-y_1,z_3-z_1) OballP=(xp−x0,yp−y0,zp−z0)JK=(x2−x1,y2−y1,z2−z1)JL=(x3−x1,y3−y1,z3−z1)由向量垂直关系 O b a l l P → ⊥ J K → \overrightarrow{O_{ball}P}\bot\overrightarrow{JK} OballP⊥JK以及 O b a l l P → ⊥ J L → \overrightarrow{O_{ball}P}\bot\overrightarrow{JL} OballP⊥JL可以得到 ( x p − x 0 ) ( x 2 − x 1 ) + ( y p − y 0
空间中任意一点到球的截面的最短距离
于 2023-02-11 11:43:45 首次发布
本文介绍了如何求解空间中任意一点到球的截面的最短距离。首先给出球和截面的方程,然后通过向量垂直关系找到球心在截面上的投影点,接着通过解方程组获取垂足坐标,从而计算出最短距离。最后,阐述了如何找到从该点到圆上垂足的最短路径并确定对应圆上点的坐标。
摘要由CSDN通过智能技术生成