空间中任意一点到球的截面的最短距离

本文介绍了如何求解空间中任意一点到球的截面的最短距离。首先给出球和截面的方程,然后通过向量垂直关系找到球心在截面上的投影点,接着通过解方程组获取垂足坐标,从而计算出最短距离。最后,阐述了如何找到从该点到圆上垂足的最短路径并确定对应圆上点的坐标。
摘要由CSDN通过智能技术生成

假设球的球心坐标为 O b a l l = { x 0 , y 0 , z 0 } O_{ball}=\{x_0,y_0,z_0\} Oball={ x0,y0,z0},球的半径为 r r r,球的方程为 ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = r 2 (x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2 (xx0)2+(yy0)2+(zz0)2=r2球的一截面的方程为 A x + B y + C z + 1 = 0 Ax+By+Cz+1=0 Ax+By+Cz+1=0该截面为一个空间中的圆,球心 O b a l l = { x 0 , y 0 , z 0 } O_{ball}=\{x_0,y_0,z_0\} Oball={ x0,y0,z0}在截面上的垂足即为空间中圆的圆心。假设圆上的任意三点的坐标分别为 J ( x 1 , y 1 , z 1 ) J(x_1,y_1,z_1) J(x1,y1,z1) K ( x 2 , y 2 , z 2 ) K(x_2,y_2,z_2) K(x2,y2,z2) L ( x 3 , y 3 , z 3 ) L(x_3,y_3,z_3) L(x3,y3,z3),圆心坐标为 P = ( x p , y p , z p ) P=(x_p,y_p,z_p) P=(xp,yp,zp),则球心 O b a l l = { x 0 , y 0 , z 0 } O_{ball}=\{x_0,y_0,z_0\} Oball={ x0,y0,z0}在截面上的投影为 P P P,可以得到下列向量 O b a l l P → = ( x p − x 0 , y p − y 0 , z p − z 0 ) J K → = ( x 2 − x 1 , y 2 − y 1 , z 2 − z 1 ) J L → = ( x 3 − x 1 , y 3 − y 1 , z 3 − z 1 ) \overrightarrow{O_{ball}P}=(x_p-x_0,y_p-y_0,z_p-z_0)\\\overrightarrow{JK}=(x_2-x_1,y_2-y_1,z_2-z_1)\\\overrightarrow{JL}=(x_3-x_1,y_3-y_1,z_3-z_1) OballP =(xpx0,ypy0,zpz0)JK =(x2x1,y2y1,z2z1)JL =(x3x1,y3y1,z3z1)由向量垂直关系 O b a l l P → ⊥ J K → \overrightarrow{O_{ball}P}\bot\overrightarrow{JK} OballP JK 以及 O b a l l P → ⊥ J L → \overrightarrow{O_{ball}P}\bot\overrightarrow{JL} OballP JL 可以得到 ( x p − x 0 ) ( x 2 − x 1 ) + ( y p − y 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值