【HDU】5175 Misaki's Kiss again(反异或|搜索匹配因子做法)

29 篇文章 0 订阅
17 篇文章 0 订阅
本文深入探讨了一种通过求解数值运算中的复杂问题来优化算法效率的方法,具体步骤包括识别所有因数,应用幂运算并进行反异或操作,最后通过优化gcd函数和处理长整型数据实现算法的快速执行。文章详细阐述了从错误到正确实现的过程,并提供了高效的代码示例,旨在提高复杂数学运算的处理速度。
摘要由CSDN通过智能技术生成

思路:求出n的所有因数
然后设m=n^p[i],p[i]是n的因子,就会得到原来的数,反异或即可。
AC代码:

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
long long p[10000];
long long mid[10000];
long long k;
int cnt2;
int cnt;
long long gcd(long long x, long long y)
{
    return y ? gcd(y, x%y) : x;
}

int main()
{
    long long n;
    int icase = 1;
    while (~scanf("%lld",&n))
    {
        cnt2 = 0;
        k = n;
        cnt = 0;
        for (long long i = 1; i*i <= n; i++)
        {
            if (n%i == 0)
            {
                p[cnt++] = i;

                if (n / i != i)
                    p[cnt++] = n / i;
            }
        }
        sort(p, p + cnt);
        for (int i = cnt - 1; i >= 0; i--)
        {
            long long l = (k^p[i]);
            if (l > 0 && l <=k&&gcd(k, l) == p[i])
                mid[cnt2++] = l;
        }
        printf("Case #%d:\n", icase++);
        printf("%d\n", cnt2);
        if (cnt2!= 0)
        {
            printf("%lld", mid[0]);
            for (int i =1; i < cnt2; i++)
                printf(" %lld", mid[i]);
        }
        printf("\n");
    }
}

一开始wa了几发,原因 在于gcd函数写错了

long long gcd(long long x, long long y)
{
    return y ? gcd(y, x%y) : x;
    //把x%y写成了y&x了,改过来之后成了x&y,导致还是错
}

接下来是 n是long long,又错了几发。
最终是过了,速度15ms,比暴力快了不少

#include<iostream>
#include<algorithm>
using namespace std;
int p[100];
int num[100];
long long mid[100000];
int cnt2 ;
long long n,cnt;

long long gcd(long long x, long long y)
{
    return y ? gcd(y, x%y) : x;
}
void getp(long long n)
{
    p[0] = 1;
    num[0] = 1;
    cnt = 1;
    for (long long i = 2; i*i <= n; i++)
    {
        if (n%i == 0)
        {
            p[cnt] = i;
            num[cnt] = 0;
            while (n%i == 0)
            {
                num[cnt]++;
                n /= i;
            }
            cnt++;
        }
    }
    if (n > 1)
    {
        if (p[cnt - 1] == n)
            num[cnt - 1]++;
        else
        {
            p[cnt] = n;
            num[cnt++] = 1;
        }
    }
}

void gao(int id, long long l)
{
    long long s = n^l;
    if (s > 0 && s <= n&&gcd(s, n) == l)
        mid[cnt2++] = s;
    long long m;
    for (int i = id + 1; i < cnt; i++)
    {
        m = 1;
        for (int j = 0; j < num[i]; j++)
        {
            m *= p[i];
            gao(i, m*l);
        }
    }
}
int main()
{
    int icase = 1;
    while (~scanf("%lld",&n))
    {
        getp(n);
        cnt2= 0;
        gao(0, 1);
        sort(mid, mid + cnt2);
        cout << "Case #" << icase++ << ":" << endl;
        cout << cnt2 << endl;
        if (cnt2 != 0)
        {
            printf("%lld", mid[0]);
            for (int i = 1; i < cnt2; i++)
                printf(" %lld", mid[i]);
        }
        printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值