原题连接:http://acm.hdu.edu.cn/showproblem.php?pid=1872
稳定排序
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3941 Accepted Submission(s): 1529
Problem Description
大家都知道,快速排序是不稳定的排序方法。
如果对于数组中出现的任意a[i],a[j](i<j),其中a[i]==a[j],在进行排序以后a[i]一定出现在a[j]之前,则认为该排序是稳定的。
某高校招生办得到一份成绩列表,上面记录了考生名字和考生成绩。并且对其使用了某排序算法按成绩进行递减排序。现在请你判断一下该排序算法是否正确,如果正确的话,则判断该排序算法是否为稳定的。
如果对于数组中出现的任意a[i],a[j](i<j),其中a[i]==a[j],在进行排序以后a[i]一定出现在a[j]之前,则认为该排序是稳定的。
某高校招生办得到一份成绩列表,上面记录了考生名字和考生成绩。并且对其使用了某排序算法按成绩进行递减排序。现在请你判断一下该排序算法是否正确,如果正确的话,则判断该排序算法是否为稳定的。
Input
本题目包含多组输入,请处理到文件结束。
对于每组数据,第一行有一个正整数N(0<N<300),代表成绩列表中的考生数目。
接下来有N行,每一行有一个字符串代表考生名字(长度不超过50,仅包含'a'~'z'),和一个整数代表考生分数(小于500)。其中名字和成绩用一个空格隔开。
再接下来又有N行,是上述列表经过某排序算法以后生成的一个序列。格式同上。
对于每组数据,第一行有一个正整数N(0<N<300),代表成绩列表中的考生数目。
接下来有N行,每一行有一个字符串代表考生名字(长度不超过50,仅包含'a'~'z'),和一个整数代表考生分数(小于500)。其中名字和成绩用一个空格隔开。
再接下来又有N行,是上述列表经过某排序算法以后生成的一个序列。格式同上。
Output
对于每组数据,如果算法是正确并且稳定的,就在一行里面输出"Right"。如果算法是正确的但不是稳定的,就在一行里面输出"Not Stable",并且在下面输出正确稳定排序的列表,格式同输入。如果该算法是错误的,就在一行里面输出"Error",并且在下面输出正确稳定排序的列表,格式同输入。
注意,本题目不考虑该排序算法是错误的,但结果是正确的这样的意外情况。
注意,本题目不考虑该排序算法是错误的,但结果是正确的这样的意外情况。
Sample Input
3 aa 10 bb 10 cc 20 cc 20 bb 10 aa 10 3 aa 10 bb 10 cc 20 cc 20 aa 10 bb 10 3 aa 10 bb 10 cc 20 aa 10 bb 10 cc 20
Sample Output
Not Stable cc 20 aa 10 bb 10 Right Error cc 20 aa 10 bb 10
下面是AC代码
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=100005;
struct node
{
string name;
int s,id;
}a[maxn],b[maxn];
int n;
bool cmp(node x,node y)
{
if(x.s==y.s) return x.id<y.id;
return x.s>y.s;
}
int main()
{
while(cin>>n)
{
for(int i=0;i<n;i++) cin>>a[i].name>>a[i].s,a[i].id=i;
for(int i=0;i<n;i++) cin>>b[i].name>>b[i].s;
sort(a,a+n,cmp);
bool flag1=0,flag2=0;
for(int i=0;i<n;i++)
{
if(a[i].s!=b[i].s) flag2=1;//不正确
else if(a[i].name!=b[i].name) flag1=1;//不稳定
}
if(!flag1&&!flag2) cout<<"Right"<<endl;
else if(flag1&&!flag2)
{
cout<<"Not Stable"<<endl;
for(int i=0;i<n;i++) cout<<a[i].name<<" "<<a[i].s<<endl;
}
else
{
cout<<"Error"<<endl;
for(int i=0;i<n;i++) cout<<a[i].name<<" "<<a[i].s<<endl;
}
}
return 0;
}