model.generate(input_tensor) 和model(input_ids=input_ids) 区别

总结

model.generate() 方法是一个高级接口,这个方法会自动处理整个生成过程,不停的预测下一个词直到最大长度的序列或结束标记,返回的结果包括提示词(prompt)和预测的文本。

model(input_ids=input_ids)返回的是模型对于输入序列的每个位置上可能出现的下一个词的预测.

总之,model.generate() 是为了方便用户进行文本生成任务而设计的高级接口,而model()是一个更底层的接口,则提供了更细粒度的控制,可以根据具体需求进行更复杂的操作,它返回的是每个token的概率,需要开发者进一步处理这些概率分布,比如通过采样或贪婪解码来选择下一个词。

model.generate(input_tensor)

output = model.generate(input_tensor) 

使用 model.generate(input_tensor) 方法通常是为了生成文本,这个方法会自动处理整个生成过程,包括将提示词(prompt)包含在生成的文本中。也就是包含输入.

model.generate() 方法是许多基于Hugging Face Transformers库的模型提供的一个高级接口,用于文本生成任务。这个方法不仅会预测下一个token,还会自动将这个token添加到输入序列中,然后继续预测下一个token,直到达到一个指定的停止条件,比如生成了最大长度的序列、遇到了一个特定的结束token(比如 <|endoftext|>),或者模型预测了一个停止token。

model(input_ids=input_ids)

outputs = model(input_ids=input_ids)
logits = outputs.logits
  1. Logitsoutputs.logits 返回的是模型对于输入序列的每个位置上可能出现的下一个词的未归一化的概率值(即logits)。这些logits可以通过softmax函数转换成概率分布,用于表示每个词汇在词汇表中的概率。

  2. Shape of logitslogits 的形状通常是 [batch size, sequence length, vocab size]。这里的 sequence length 指的是输入序列的长度,而 vocab size 则是模型词汇表的大小。

  3. 获取下一个词的logits:在文本生成任务中,我们通常关注的是序列最后一个词的logits,因为它们代表了模型预测的下一个词的概率分布。可以通过 logits[:, -1, :] 来获取这些logits,这样会得到一个 [batch size, vocab size] 的矩阵。

  4. 文本生成:基于 next_token_logits,可以采用不同的策略来选择下一个词,比如:

    • 采样:从概率分布中随机抽取一个词。
    • argmax:选取概率最高的词。
  5. 循环预测:在生成文本时,可以重复上述过程,每次都将选出的新词加入到输入序列中,并继续预测下一个词,直到达到所需的序列长度或满足终止条件为止。

在你给出的代码示例中:

    """
    logits = {Tensor:(1,199,1007)} tensor([[[-0.3782,  0.5180,   ..., -1.3139, -0.1420,  0.2791]]],
       device='cuda:0', grad_fn=<UnsafeViewBackward0>)
    logits的形状为(1, 199, 1007),这意味着:

    第一个维度是batch
    size,这里是1,表示只有一个输入实例。
    第二个维度是提示词长度,这里是199,表示每个输入实例有199个时间步或位置。
    第三个维度是词表长度,这里是1007,表示每个位置对应词表中的1007个可能的词。
    """

这里的logits变量通常包含了一个批次(batch)的数据在各个时间步(time step)上的预测结果。具体来说:

  • logits:一个三维张量(tensor),其形状通常是 (batch_size, sequence_length, vocab_size)。其中:

    • batch_size 是当前批次中的样本数量。
    • sequence_length 是序列的长度,即输入的文本长度。
    • vocab_size 是词汇表的大小,即模型可以预测的所有可能的下一个词的数量。
  • 0 表示选取批次中的第一个样本。如果只有一个样本,那么批次大小就是1,这里的意思是从单个样本中提取数据。

  • -1 表示选取序列的最后一个时间步。这是因为在生成文本时,我们通常关注的是基于整个输入序列预测的下一个词,而最后一个时间步的输出包含了前面所有输入的信息。

  • : 表示选取该时间步上所有可能的词汇项(即词汇表中的每一个词)的预测概率。

因此,next_token_logits 实际上是最后一个时间步的预测概率向量,即模型预测下一个词的概率分布。接下来,您可以使用这些logits来采样下一个词,比如使用Top-k采样、Top-p采样或其他策略。

举例说明:

我这里是一个输入长度9 ,预测长度10的的模型例子.

outputs = model(input_ids=input_ids)
logits = outputs.logits
# 直接从logits中获取每个时间步上概率最高的词的索引
predicted_tokens = torch.argmax(logits, dim=-1)

输入input_ids = tensor([[681, 137, 725, 56, 224, 710, 147, 309, 834]], device='cuda:0')

返回结果 predicted_tokens  = tensor([[429, 793, 144,  42, 505, 758,  14, 464, 194]], device='cuda:0')

对于681 预测下一个索引是  429 ,后面的实际词索引是 725,所以这是错误的预测。
对于137 预测下一个索引是  793,后面的实际词索引是 725,所以这是错误的预测。

对于725预测下一个索引是  144,后面的实际词索引是 56,所以这是错误的预测。

对于56 预测下一个索引是  42,后面的实际词索引是 224,所以这是错误的预测。

对于224预测下一个索引是  505,后面的实际词索引是 710,所以这是错误的预测。

只获取最后一个token的预测

这里input_ids通常包含了提示词(prompt)的编码,模型根据这些编码来预测接下来的词。outputs.logits通常具有这样的形状:[batch size, sequence length, vocab size]。其中sequence length对应于输入序列的长度,而logits的最后一个维度包含了词汇表里每个词的预测分数。

对于文本生成任务,我们通常只对最后一个token的预测分数感兴趣,因为这个分数代表了模型预测的下一个词的概率分布。如果我们想要生成文本,我们会从这些logits中采样或者取argmax来得到下一个词的ID,然后将其添加到输入序列中,继续进行下一步的预测。

以下是如何获取最后一个token的logits的一个例子:

next_token_logits = logits[:, -1, :]
在这里,next_token_logits将是一个形状为[batch size, vocab size]的矩阵,包含了模型对每个样本的下一个词的预测分数。这个过程确实不包含原始的提示词,它只关注于预测序列的下一步。


,模型会为输入序列中的每一个token(通常是单词或子词单元)分配一个概率分布。这个概率分布反映了模型认为在给定上下文的情况下,下一个可能的词是什么。

具体来说,当模型接收到一个输入序列时,它会通过多层神经网络处理这些信息,并为序列中的每个位置生成一个logits向量。这个logits向量代表了词汇表中每个词出现的可能性。

Logits:模型输出的未归一化的对数概率,形状为 [batch size, sequence length, vocab size]。对于序列中的每个位置,模型都会输出一个长度等于词汇表大小的向量。
Softmax:通常我们会对logits应用softmax函数,将其转换为概率分布,即每个词出现的概率。这样可以直观地看到模型认为哪些词更有可能出现在当前位置。
Token概率:在序列的每个位置上,模型都为下一个可能出现的词生成了一个概率分布。如果我们关注某个特定位置,例如序列的最后一个位置,则 logits[:, -1, :] 就是对下一个词的概率分布。
生成新词:基于这个概率分布,我们可以选择概率最高的词作为下一个词,或者采用采样的方法随机选择一个词,概率较高的词被选中的可能性也更高。
序列扩展:一旦选择了新的词,就会将其添加到序列的末尾,然后重复上述过程来预测下一个词。
循环过程:这个过程会一直重复,直到生成足够长的文本或者达到终止条件为止。
所以,当您提到“每个字都有一个概率码”时,这里的“概率码”实际上指的是每个位置上的logits值,这些值经过softmax转换后成为概率分布的一部分。在整个序列中,每个位置的logits都是根据前面的所有token来计算的,这意味着模型确实考虑了整个提示词序列的信息。


评估模型在预测提示词序列中的表现。

理论上,您可以使用logits来比较模型对提示词序列中每个词的预测概率与实际词之间的匹配程度。但是,需要注意的是,这种评估方法有一些限制,并且通常不是评估模型性能的标准方法。

如何评估模型对提示词序列的表现
获取logits:
获取模型对输入序列(提示词)的预测logits。
获取实际标签:
创建一个张量,包含实际的词索引,这些索引对应于输入序列中的词。
计算损失:
使用交叉熵损失(Cross-Entropy Loss)来衡量模型预测与实际标签之间的差异。这可以反映模型对提示词序列中每个词的预测准确性。
计算准确率:
对于每个时间步,使用argmax函数获取预测概率最高的词索引。
比较这些索引与实际词索引是否一致,以计算准确率。
示例代码
下面是一个简单的示例,展示如何计算模型在提示词序列上的准确率:

Python
深色版本
import torch
import torch.nn.functional as F

# 假设 logits 和 input_ids 已经定义好了
logits = outputs.logits
input_ids = input_ids  # 输入序列的词索引

# 获取实际标签(去除最后一个时间步,因为我们不关心模型对它的预测)
labels = input_ids[:, :-1].contiguous()

# 计算每个时间步预测概率最高的词索引
predicted_tokens = torch.argmax(logits, dim=-1)

# 计算准确率
correct_predictions = (predicted_tokens == labels).float()
accuracy = correct_predictions.mean().item()

print("Accuracy:", accuracy)
注意事项
评估目的:
这种评估方法主要用于了解模型在预测已知序列中的词时的表现。通常情况下,我们更关心模型生成新文本的能力,而不是它能否正确预测已知的输入序列。
训练与评估:
在训练阶段,我们通常使用教师强制(teacher forcing)来训练模型预测下一个词。这意味着模型的预测结果通常不用于生成后续的输入,而是使用实际的下一个词作为输入。因此,模型可能在预测提示词序列时表现出色,但在生成新文本时表现不佳。
评估指标:
通常,我们使用困惑度(perplexity)来评估语言模型的整体性能,而不是直接比较模型对已知序列的预测准确率。
总结
虽然您可以使用上述方法来评估模型在提示词序列上的表现,但这种方法并不是评价语言模型性能的标准做法。如果您主要关心的是模型生成新文本的能力,那么更合适的评估方法是使用困惑度等指标。如果您需要进一步的帮助或有其他问题,请随时告诉我!

  • 15
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值