描述
无向连通图 G 有 n 个点,n-1 条边。点从 1 到 n 依次编号,编号为 i 的点的权值为
Wi
, 每条边的长度均为 1。图上两点(u, v)的距离定义为 u 点到 v 点的最短距离。对于图 G 上的点对(u, v),若它们的距离为 2,则它们之间会产生
Wu
×
Wv
的联合权值。
请问图 G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?
格式
输入格式
第一行包含 1 个整数 n。
接下来 n-1 行,每行包含 2 个用空格隔开的正整数 u、v,表示编号为 u 和编号为 v 的点 之间有边相连。
最后 1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示 图 G 上编号为 i 的点的权值为
Wi
。
输出格式
输出共 1 行,包含 2 个整数,之间用一个空格隔开,依次为图 G 上联合权值的最大值 和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007取余。
限制
对于 30%的数据,1 < n ≤ 100;
对于 60%的数据,1 < n ≤ 2000;
对于 100%的数据,1 < n ≤ 200,000,0 <
Wi
≤ 10,000。
提示
本例输入的图如上所示,距离为 2 的有序点对有(1,3)、(2,4)、(3,1)、(3,5)、(4,2)、(5,3)。 其联合权值分别为 2、15、2、20、15、20。其中最大的是 20,总和为 74
看着像图,其实没多少算法。。。
把所有点拉通排序即可找出。具体见题解。
范围真是坑。。。
CODE :
#include <cstdio>
#include <algorithm>
#include <cstring>
#define MOD 10007
using namespace std;
int n,w[200001],maxx,sum;
struct Complex {
int u, v;
bool operator < (const Complex& rhs) const{
if(u != rhs.u) {
return u < rhs.u;
}else {
return w[v] < w[rhs.v];
}
}
}node[1000000];
int main() {
memset(node,0,sizeof(0));
scanf("%d",&n);
for(int i = 1; i < n; i++) {
scanf("%d%d", &node[i].u,&node[i].v);
node[n+i-1].u = node[i].v;node[n+i-1].v = node[i].u;
}
for(int i = 1; i <= n; i++) {
scanf("%d", &w[i]);
}
sort(node+1, node+2*n-1);
int beg(1), end(1), maxxx, s1(0), s2(0);
for(int i = 1; i < 2*n - 1; i++) {
if(node[i].u==node[i+1].u) {
end++;
}else if(node[i].u!=node[i+1].u) {
if(beg == end) {
beg++;end++;
continue;
}
maxxx = w[node[end].v] * w[node[end-1].v] ;
if(maxx <= maxxx) maxx = maxxx;
s1 = s2 = 0;
for(int ii = beg; ii <= end; ii++) {
s1 += w[node[ii].v];
s1%= MOD;
s2 += (w[node[ii].v]%MOD)*(w[node[ii].v]%MOD);
s2%=MOD;
}
sum += (s1*s1 - s2);
sum =(sum+MOD) % MOD;
beg = end;
beg++;end++;
}
}
printf("%d %d", maxx, sum);
return 0;
}