【NOIP2014 D1T2】【Vijos】P1906 联合权值 (硬编程)

P1906联合权值

描述

无向连通图 G 有 n 个点,n-1 条边。点从 1 到 n 依次编号,编号为 i 的点的权值为  Wi , 每条边的长度均为 1。图上两点(u, v)的距离定义为 u 点到 v 点的最短距离。对于图 G 上的点对(u, v),若它们的距离为 2,则它们之间会产生 Wu × Wv 的联合权值。

请问图 G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

格式

输入格式

第一行包含 1 个整数 n。

接下来 n-1 行,每行包含 2 个用空格隔开的正整数 u、v,表示编号为 u 和编号为 v 的点 之间有边相连。

最后 1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示 图 G 上编号为 i 的点的权值为 Wi

输出格式

输出共 1 行,包含 2 个整数,之间用一个空格隔开,依次为图 G 上联合权值的最大值 和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007取余。

样例1

样例输入1[复制]

5
1 2
2 3
3 4
4 5
1 5 2 3 10

样例输出1[复制]

20 74

限制

对于 30%的数据,1 < n ≤ 100;

对于 60%的数据,1 < n ≤ 2000;

对于 100%的数据,1 < n ≤ 200,000,0 <  Wi  ≤ 10,000。

提示

图片

本例输入的图如上所示,距离为 2 的有序点对有(1,3)、(2,4)、(3,1)、(3,5)、(4,2)、(5,3)。 其联合权值分别为 2、15、2、20、15、20。其中最大的是 20,总和为 74

看着像图,其实没多少算法。。。

把所有点拉通排序即可找出。具体见题解。

范围真是坑。。。

CODE :


#include <cstdio>
#include <algorithm>
#include <cstring>
#define MOD 10007

using namespace std;

int n,w[200001],maxx,sum;

struct Complex {
	int u, v;
	
	bool operator < (const Complex& rhs) const{
		if(u != rhs.u) {
			return u < rhs.u;
		}else {
			return w[v] < w[rhs.v];
		}
	}
	
}node[1000000];

int main() {
	memset(node,0,sizeof(0));
	scanf("%d",&n);
	for(int i = 1; i < n; i++) {
		scanf("%d%d", &node[i].u,&node[i].v);
		node[n+i-1].u = node[i].v;node[n+i-1].v = node[i].u;
	}
	for(int i = 1; i <= n; i++) {
		scanf("%d", &w[i]);
	}
	sort(node+1, node+2*n-1);
	int beg(1), end(1), maxxx, s1(0), s2(0);
	for(int i = 1; i < 2*n - 1; i++) {
		if(node[i].u==node[i+1].u) {
			end++;
		}else if(node[i].u!=node[i+1].u) {
			if(beg == end) {
				beg++;end++;
				continue;
			}
			maxxx = w[node[end].v] * w[node[end-1].v] ;
			if(maxx <= maxxx) maxx = maxxx;
			s1 = s2 = 0;
			for(int ii = beg; ii <= end; ii++) {
				s1 += w[node[ii].v];
				s1%= MOD;
				s2 += (w[node[ii].v]%MOD)*(w[node[ii].v]%MOD);
				s2%=MOD;
			} 
			sum += (s1*s1 - s2);
			sum =(sum+MOD) % MOD;
			beg = end;
			beg++;end++;
		}
	}
	printf("%d %d", maxx, sum);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值