Python
天台的猫爷爷
这个作者很懒,什么都没留下…
展开
-
[GitHub]第三讲:简单分支操作
Git 最核心的操作对象是版本( commit ),最核心的操作技巧就是分支。什么是分支?仓库创建后,一旦有了新 commit,默认就会放到一个分支上,名字叫 master。前面咱们一直看到的多个版本组成的一条历史线,就是 master 分支。但是一个仓库内,用户可以自己创建其他的分支,可以有多条历史线。说说 master 这个名字,一般中文叫“主分支”,其实从技术底层来讲转载 2017-11-30 16:43:23 · 322 阅读 · 0 评论 -
PaddlePaddle(v0.10.0)源码方式安装
0、前言 PaddlePaddle,百度旗下深度学习开源平台。 2016年9月27日,百度宣布其全新的深度学习开源平台PaddlePaddle在开源社区Github及百度大脑平台开放,供广大开发者下载使用。百度成为继Google、Facebook、IBM后另一个将人工智能技术开源的科技巨头,同时也是国内首个开源深度学习平台的科技公司。—摘自百度百科:PaddleP转载 2018-01-02 23:01:18 · 408 阅读 · 0 评论 -
pandas中关于set_index和reset_index的用法
1.set_indexDataFrame可以通过set_index方法,可以设置单索引和复合索引。 DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) append添加新索引,drop为False,inplace为True时,索引将会还原为列转载 2018-01-12 14:28:30 · 11394 阅读 · 0 评论 -
PANDAS 数据合并与重塑(join/merge篇)
mergepandas的merge方法提供了一种类似于SQL的内存链接操作,官网文档提到它的性能会比其他开源语言的数据操作(例如R)要高效。和SQL语句的对比可以看这里merge的参数on:列名,join用来对齐的那一列的名字,用到这个参数的时候一定要保证左表和右表用来对齐的那一列都有相同的列名。left_on:左表对齐的列,可以是列名,也可以是和dataf转载 2018-01-12 14:29:14 · 417 阅读 · 0 评论 -
人机对战初体验—四子棋游戏
一、实验介绍1.1 实验内容实验利用Python模拟AI和玩家进行四子棋游戏,利用游戏实验Pygame库,为游戏提供界面和操作支持。AI算法借用蒙特卡洛搜索树思想。通过设置AI的难度系数,即AI所能考虑到的未来棋子的可能走向,从而选择出最佳的方案和玩家对抗。难度系数越大,AI搜索范围越广,它所能做出的决定越明智。游戏最终效果截图:1.2 实验知识点转载 2018-01-21 13:04:39 · 1926 阅读 · 0 评论 -
中文分词的基本原理以及jieba分词的用法
结巴分词是国内程序员用Python开发的一个中文分词模块,可能是最好的Python中文分词组件?中文分词的原理1、中文分词(Chinese Word Segmentation) 指的是将一个汉字序列切分成一个一个单独的词。分词就是将连续的字序列按照一定的规范重新组合成词序列的过程2、现有的分词算法可分为三大类:基于字符串匹配的分词方法、基于理解的分词方法和基于统计的分词方法基于字符转载 2018-01-12 23:11:23 · 4925 阅读 · 0 评论 -
波士顿房价预测
机器学习模型评价与验证项目 1: 预测波士顿房价欢迎来到机器学习工程师纳米学位的第一个项目!在此文件中,有些示例代码已经提供给你,但你还需要实现更多的功能来让项目成功运行。除非有明确要求,你无须修改任何已给出的代码。以编程练习开始的标题表示接下来的内容中有需要你必须实现的功能。每一部分都会有详细的指导,需要实现的部分也会在注释中以TODO标出。请仔细阅读所有的提示!转载 2018-01-07 23:54:51 · 9461 阅读 · 3 评论 -
GitHub 上最火的 Python 开源项目
https://github.com/tensorflow/tensorflow Star 68481Google 的 TensorFlow 是最流行的开源 AI 库之一。它的高计算效率,丰富的开发资源使它被企业和个人开发者广泛采用。TensorFlow 是一个采用数据流图,用于数值计算的开源软件库。TensorFlow 最初由Google 大脑小组(隶属于 Google 机器智能研究机构转载 2018-01-25 16:04:46 · 2419 阅读 · 0 评论 -
精品旅行服务成单预测----参赛经验分享(1)
在数据集中转换时间import timedef time_conv(x): timeArray=time.localtime(x) otherStyleTime = time.strftime("%Y-%m-%d %H:%M:%S", timeArray) return otherStyleTime#action_train.actionTime=action_原创 2018-01-26 15:53:54 · 908 阅读 · 0 评论 -
pandas聚合和分组运算之groupby
pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。计算分组摘要统计,如计数、平均值、标准差,或用户自定义函数。对DataFrame的列应用各种各样的函数。应用组内转换或其他运算,如规格化、线性回归、排名或选取子集等。计算透视表或交叉表。执行分位数分析以及其转载 2018-01-26 16:26:29 · 292 阅读 · 0 评论 -
如何进行特征选择?
特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。特征选择主要有两个功能:减少特征数量、降维,使模型泛化能力更强,减少过拟合增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的。通常情况下,我们经常不管三七二十一,选择一种自己最熟悉或者最方...转载 2018-04-24 20:31:46 · 321 阅读 · 0 评论 -
微软开源分布式高性能GB框架LightGBM Ubuntu、CentOS下编译安装过程
LightGBM(Light Gradient Boosting Machine)是一个基于决策树算法的快速的、分布式的、高性能 gradient boosting(GBDT、GBRT、GBM 或 MART)框架,可被用于排行、分类以及其他许多机器学习任务中。 开源项目地址: https://github.com/Microsoft/LightGBM 开源 LightGBM:三天内收获GitHub...转载 2018-04-27 21:05:52 · 325 阅读 · 0 评论 -
主流机器学习模型模板代码+经验分享[xgb, lgb, Keras, LR]
刷比赛利器,感谢分享的人。摘要最近打各种比赛,在这里分享一些General Model,稍微改改就能用的环境: python 3.5.2XGBoost调参大全: http://blog.csdn.net/han_xiaoyang/article/details/52665396 XGBoost 官方API: http://xgboost.readthedocs.io/en/latest//pyth...转载 2018-04-28 15:04:12 · 394 阅读 · 0 评论 -
推荐个学习python的网站
本系列题目属于在线闯关题http://www.pythonchallenge.com/原创 2017-12-17 19:17:50 · 614 阅读 · 0 评论 -
Sklearn-train_test_split随机划分训练集和测试集
sklearn.model_selection.train_test_split随机划分训练集和测试集官网文档:http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split转载 2017-12-16 21:00:58 · 1326 阅读 · 0 评论 -
(2017-12)最新12306爬虫
#!/usr/bin/python # vim: set fileencoding=utf-8 :"""命令行火车票查看器Usage: tickets [-gdtkz] Options: -h,--help 显示帮助菜单 -g 高铁 -d 动车 -t 特快 -k 快速 -z 直达Example: tickets -d 南京 上海 2017-12-原创 2017-12-15 21:35:59 · 511 阅读 · 0 评论 -
docopt:为Python程序创造一个优雅的命令行界面
docopt根据你写的文档描述,可以自动为你生成解析器,可以非常容易的为你的python程序创建命令行界面(Command Line Interface,CLI)。docopt的视频介绍链接:PyCon UK 2012: Create *beautiful* command-line interfaces with Python 一个简单的例子转载 2017-12-10 11:04:32 · 913 阅读 · 0 评论 -
Python 图片转字符画
##本例程转自“实验楼”,如果侵权将立即删除一、实验介绍1.1 实验简介本实验用 50 行 Python 代码完成图片转字符画小工具。通过本实验将学习到 Linux 命令行操作,Python 基础,pillow 库的使用,argparse 库的使用。1.2 实验知识点本节实验中我们将实践以下知识:Linux 命令行操作Python 基础pillow转载 2017-12-01 15:28:20 · 576 阅读 · 0 评论 -
Python 命令行解析工具 Argparse介绍(一)
Python 命令行解析工具 Argparse介绍(一)最近在研究python的命令行解析工具,argparse,它是Python标准库中推荐使用的编写命令行程序的工具。以前老是做UI程序,今天试了下命令行程序,感觉相当好,不用再花大把时间去研究界面问题,尤其是vc++中尤其繁琐。现在用python来实现命令行,核心计算模块可以用c自己写扩展库,效果挺好。学习了ar转载 2017-12-01 15:58:56 · 379 阅读 · 0 评论 -
Python 命令行解析工具 Argparse介绍(二)
可选参数到目前为止,我们已经使用了位置参数。让我们来看下如何使用可选参数。[python] view plain copyimport argparse parser = argparse.ArgumentParser() parser.add_argument("--verbosity", help="incre转载 2017-12-01 15:59:49 · 1723 阅读 · 0 评论 -
Python脚本报错AttributeError: ‘module’ object has no attribute’xxx’解决方法
最近在编写Python脚本过程中遇到一个问题比较奇怪:Python脚本完全正常没问题,但执行总报错"AttributeError: 'module' object has no attribute 'xxx'"。这其实是.pyc文件存在问题。问题定位:查看import库的源文件,发现源文件存在且没有错误,同时存在源文件的.pyc文件 问题解决方法:1转载 2017-12-10 21:22:52 · 70433 阅读 · 4 评论 -
python中defaultdict方法的使用
默认值可以很方便众所周知,在Python中如果访问字典中不存在的键,会引发KeyError异常(JavaScript中如果对象中不存在某个属性,则返回undefined)。但是有时候,字典中的每个键都存在默认值是非常方便的。例如下面的例子:strings = ('puppy', 'kitten', 'puppy', 'puppy', 'weasel', 'pupp转载 2017-12-02 21:23:49 · 211 阅读 · 0 评论 -
Python PrettyTable 模块(美化库)
Python PrettyTable 模块简介安装示例使用创建表直接创建从已有文件创建CSVHTMLSQL添加元素按行添加按列添加输出格式ASCII码表直接输出无表格框输出HTML表选择子表表排序控制表样式自带样式手动控制样式可调整选项用法调整对齐方式的几种方法参考资料转载 2017-12-11 15:40:14 · 16869 阅读 · 0 评论 -
python requests的安装与简单运用
requests是python的一个HTTP客户端库,跟urllib,urllib2类似,那为什么要用requests而不用urllib2呢?官方文档中是这样说明的:python的标准库urllib2提供了大部分需要的HTTP功能,但是API太逆天了,一个简单的功能就需要一大堆代码。我也看了下requests的文档,确实很简单,适合我这种懒人。下面就是一些简单指南。转载 2017-12-11 23:36:44 · 280 阅读 · 0 评论 -
coures包下载和安装 可解决报错ImportError: No module named '_curses'
courescurses 库 ( ncurses )提供了控制字符屏幕的独立于终端的方法。curses 是大多数类似于 UNIX 的系统(包括Linux)的标准部分,而且它已经移植到 Windows 和其它系统。 安装包 http://www.lfd.uci.edu/~gohlke/pythonlibs/#curses安装 pip insta转载 2017-12-04 23:32:58 · 298 阅读 · 0 评论 -
numpy库使用方法
一、numpy概述numpy(Numerical Python)提供了python对多维数组对象的支持:ndarray,具有矢量运算能力,快速、节省空间。numpy支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。二、创建ndarray数组ndarray:N维数组对象(矩阵),所有元素必须是相同类型。 ndarray属性:ndim属性,表示维度个转载 2017-11-28 11:33:31 · 642 阅读 · 0 评论 -
PYthon——plt.scatter各参数详解
最近开始学习Python编程,遇到scatter函数,感觉里面的参数不知道什么意思于是查资料,最后总结如下:1、scatter函数原型2、其中散点的形状参数marker如下:3、其中颜色参数c如下:4、基本的使用方法如下:[python] view plain copy#导入转载 2017-11-28 14:15:32 · 4840 阅读 · 0 评论 -
人脸检测及识别python实现系列(5)
转自https://www.cnblogs.com/neo-T/p/6477378.html经过前面稍显罗嗦的准备工作,现在,我们终于可以尝试训练我们自己的卷积神经网络模型了。CNN擅长图像处理,keras库的tensorflow版亦支持此种网络模型,万事俱备,就放开手做吧。前面说过,我们需要通过大量的训练数据训练我们的模型,因此首先要做的就是把训练数据准备好,并将其输入给CNN。前面我们已经准备...转载 2018-05-15 16:41:14 · 2098 阅读 · 0 评论