在数据集中转换时间
import time
def time_conv(x):
timeArray=time.localtime(x)
otherStyleTime = time.strftime("%Y-%m-%d %H:%M:%S", timeArray)
return otherStyleTime
#action_train.actionTime=action_train.actionTime.map(lambda x: time_conv(x))
orderHistory_train.orderTime=pd.to_datetime(orderHistory_train.orderTime.map(lambda x: time_conv(x)),format="%Y-%m-%d %H:%M:%S")
orderHistory_test.orderTime=pd.to_datetime(orderHistory_test.orderTime.map(lambda x: time_conv(x)),format="%Y-%m-%d %H:%M:%S")
action_train.actionTime=pd.to_datetime(action_train.actionTime.map(lambda x: time_conv(x)),format="%Y-%m-%d %H:%M:%S")
action_test.actionTime=pd.to_datetime(action_test.actionTime.map(lambda x: time_conv(x)),format="%Y-%m-%d %H:%M:%S")
orderFuture_train.rename(columns={'orderType':'label'},inplace=True)
1. pd.to_datatime用法:
pandas中的to_datetime( )有和datetime( )类似的功能。
(1)获取指定的时间和日期。
eg:
(2)将Str和Unicode转化为时间格式
eg:
2.strftime的用法
strftime可以用来获得当前时间,可以将时间格式化为字符串等等,还挺方便的。但是需要注意的是获得的时间是服务器的时间,注意时区问题,比如gae撒谎那个的时间就是格林尼治时间的0时区,需要自己转换。
strftime()函数将时间格式化
我们可以使用strftime()函数将时间格式化为我们想要的格式
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
3.strptime的用法
Python time strptime() 函数根据指定的格式把一个时间字符串解析为时间元组。
python中时间日期格式化符号:
- %y 两位数的年份表示(00-99)
- %Y 四位数的年份表示(000-9999)
- %m 月份(01-12)
- %d 月内中的一天(0-31)
- %H 24小时制小时数(0-23)
- %I 12小时制小时数(01-12)
- %M 分钟数(00=59)
- %S 秒(00-59)
- %a 本地简化星期名称
- %A 本地完整星期名称
- %b 本地简化的月份名称
- %B 本地完整的月份名称
- %c 本地相应的日期表示和时间表示
- %j 年内的一天(001-366)
- %p 本地A.M.或P.M.的等价符
- %U 一年中的星期数(00-53)星期天为星期的开始
- %w 星期(0-6),星期天为星期的开始
- %W 一年中的星期数(00-53)星期一为星期的开始
- %x 本地相应的日期表示
- %X 本地相应的时间表示
- %Z 当前时区的名称
- %% %号本身
实例: