Sorting It All Out
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
-
输入
-
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
输出
-
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
样例输入
-
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
样例输出
-
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
来源
-
POJ
/* poj的 另一种各种拓扑排序 Time:2014-12-12 */ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int MAX=30; int in[MAX],q[MAX]; int map[MAX][MAX]; int topSort(int n){ int tempIN[MAX]; for(int i=1;i<=n;i++) tempIN[i]=in[i]; int numIN,pos,flag=1,k=0; for(int i=1;i<=n;i++){ numIN=0;pos=0; for(int j=1;j<=n;j++){//每次找一个入度为0 的 if(tempIN[j]==0){ pos=j; numIN++; //printf("%d ",pos); } } //printf("%d %d\n",pos,numIN); tempIN[pos]=-1; if(numIN==0) return 0; if(numIN>1) flag=-1;//无序,后边可能出现环 故不能直接返回 q[k++]=pos; for(int j=1;j<=n;j++){ if(map[pos][j]){ tempIN[j]--; } } } return flag; } int main(){ int n,m; char str[10]; while(scanf("%d%d",&n,&m)!=EOF){ if(n==0&&m==0)break; memset(in,0,sizeof(in)); memset(map,0,sizeof(map)); int flag,sign=0; for(int i=1;i<=m;i++){ scanf("%s",str); int u=str[0]-'A'+1; int v=str[2]-'A'+1; map[u][v]=1; in[v]++; if(sign) continue; flag=topSort(n); if(flag==0){ sign=1; printf("Inconsistency found after %d relations.\n",i); }else if(flag==1){ sign=1; printf("Sorted sequence determined after %d relations: ",i); for(int j=0;j<n;j++) printf("%c",q[j]+'A'-1); puts("."); } } if(flag==-1){ puts("Sorted sequence cannot be determined."); } } return 0; }
-
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.