[paper] 00029 Deep Face Recognition: A Survey (上)

这篇论文深入探讨了人脸识别,特别是对已有深度学习经验的研究者有极大帮助。涵盖了主流网络架构如Deepface、DeepID、FaceNet等,以及主要的人脸识别基准测试。文章详细介绍了从人脸处理、特征提取到深度特征匹配的流程,并分析了损失函数和网络架构的发展。
摘要由CSDN通过智能技术生成

 这周开始搞人脸识别,找啊找啊找论文,这篇论文对于刚开始搞人脸识别的,并且有其它深度学习经验的工作者来说,是个福音。

 

Deep Face Recognition: A Survey
1. INFORMATION

Attributes: 

a. Mainstream network architecture: Deepface [195], DeepID series [191],
[222], [187], [188], VGGFace [149], FaceNet [176], and
VGGFace2 [22], and other specific architectures designed
for FR are covered

b. Major FR benchmarks, such as LFW [90], IJBA/B/C [110], [219], Megaface [105], and MS-Celeb-

1M [69],

II Overview 

A Background Concepts and Terminoloy

 

image.png

where Ii and Ij are two face images, respectively; P stands for face processing to handle intra-personal variations, such as poses, illuminations, expressions and occlusions; F denotes feature extraction, which encodes the identity information and M means a 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值