- 博客(24)
- 资源 (2)
- 收藏
- 关注
原创 再学西瓜书----chapter9 k-mean 均值聚类
? K-means是有监督聚类还是无监督聚类无监督问题, 还有pca降维也是无监督问题。? K-means 聚类方法步骤1:首先确定一个k值,即我们希望将数据集经过聚类得到k个集合。2:从数据集中随机选择k个数据点作为质心。3:对数据集中每一个点,计算其与每一个质心的距离(如欧式距离),离哪个质心近,就划分到那个质心所属的集合。4:把所有数据归好集合后,一共有k个集合。然后重新计算每个集合的质心。5:如果新计算出来的质心和原来的质心之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变
2020-06-30 10:53:53 321
翻译 再学西瓜书----chapter6 支持向量机SVM
Page 121~Page 123比较好的推文可以参考这篇,讲的比西瓜书详细关于svm的推导不准备赘述了,这里只注重结论,超平面 wTx+ b = 0对于线性可分的情况,超平面其实是我们需要求的东西支持向量 就是离超平面最近的向量,可以是一个可以是多个根据相关公式推导:最终要求的最优的超平面其实只要优化凸函数: 对于一元函数f(x),我们可以通过其二阶导数f″(x) 的符号来判断。如果函数的二阶导数总是非负,即f″(x)≥0 ,则f(x)是凸函数对于多元函数f(x),我们可以通过其Hes
2020-06-29 15:53:18 226
原创 再学花书----chapter5机器学习基础
pdf: Page115~Page 120机器学习本质上属于应用统计学,更多地关注于如何用计算机统计地估计复杂函数,不太关注为这些函数提供置信区间? 学习算法中的学习是什么意思 对于某类任务 T(target) 和性能度量P(performance measurement) ,一个计算机程序被认为可以从经验 E (experience)中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性能有所提升样本: 我们从某些希望机器学习系统处理的对象或事件中收集到的已经量化的 特征(f
2020-06-23 18:29:32 324
原创 再学花书----chapter6 前馈神经网络
深度前馈网络(deep feedforward network): 也叫作 前馈神经网络(feedforward neural network)或者 多层感知机(multilayer perceptron, MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数 f∗。线性模型: 线性模型,例如逻辑回归和线性回归,是非常吸引人的, 因为无论是通过闭解形式还是使用凸优化,它们都能高效且可靠地拟合。线性模型也有明显的缺陷,那就是该模型的能力被局限在线性函数里,所以它无法理解任何两个输入变量间的相互作用
2020-06-23 17:59:01 167
原创 无root权限编译安装ffmpeg
linux 软件安装完全没有windows软件安装的方便,特别是没有root权限安装,可能得涉及到编译,整个编译安装ffmpeg的方法着实让我花了不少时间。参考博客有两篇贴一下:https://www.cnblogs.com/taolusi/p/9240870.html主要是按照第一篇博客的步骤走的,1:从官网下载ffmpeg源码,wget 就行2:解压源码压缩包,进入, 执行./conf...
2019-11-09 10:27:34 545
原创 SR竞赛准备
2019/10/30 :调研文献:2019/10/31:跑第一个代码DBPN做完dataset部分,但是是对文件的直接加载,所以训练速度比较慢,可以使用lmdb格式进行改写多线程对数据集视频整理成图片ans:对SR问题怎么进行数据增强跑代码的过程中发现:不像原版DenseNets,我们避免使用dropout和batch norm...
2019-11-02 16:31:35 264
原创 pytorch 2范数归一化的表示
def l2_norm(input, axit=1): norm = torch.norm(input,2,axit,True) output = torch.div(input, norm) return output# 这里假设input.shape = (2, 10) 最后得到的结果是每一行得到的每个值平方和为1self.kernel.data.unifor...
2019-09-22 16:41:07 5106
原创 CASIA-WebFace数据集清洗
中科院李子青课题组于2014年发布的CASIA-WebFace数据集收集了10000多个名人的照片,然而,这些照片是在网上用爬虫扒下来的,所以有一些数据存在问题,这里对这个数据集做清洗。1:使用RetinaFace对给定的图片做人脸检测,对于提取不到landmark/boundingbox的图片逐个做分析。...
2019-08-21 16:42:19 2415
原创 二叉树建立
include <stdio.h>include <stdlib.h>struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; };struct TreeNode *CreateNode(int data){ struct TreeNode ...
2019-08-19 17:38:33 163
原创 人脸检测流程
人脸检测流程图如上图所示,对于每一步做相关分析.,人脸检测算法准备使用训练集CASIA-WebFace数据集及简单介绍,测试集使用MegaFace数据集。Face detection目前最火的开源人脸检测算法是Retinaface,所以为了得到比较好的人脸框准备使用Retinaface算法做人脸检测,Retinaface关于Pytorch的实现可以点击这个[链接](https://git...
2019-08-19 15:22:24 2349
原创 局域网通信图片传输
想实现一下两个电脑之间图片传输,同时建立一个局域网网站,可以在网络访问图片信息。硬件配置:>一台Linux电脑(发送端)>一台window电脑(接受端)>一部手机(当路由器用)WiFi连接两台电脑都连上手机的wifi,通过ifconfig(linux),ipconfig(window),查看两个电脑的IP地址IP_linux, IP_windows。wind...
2019-07-23 11:20:36 2443
原创 sphereface loss不收敛分析
1:lr 从1e-2 ~ 1e-52:weight_decay = 1e-2 ~ 1e-4 没有作用3:怕是sphereface出了问题,把最后一层的fc层,改成了原有的Linear,结果还是不好。最后改了loss (cross_entorpy)函数还是不对4:考虑resnet101的预训练模型不对,发现确实是原有模型5:考虑加载数据问题,将原来的初始大小由299改为了200...
2019-07-22 16:55:16 731
原创 人脸开集检测验证流程
1:首先定义两个数据集,一个大的数据集一个小的数据集。大的数据集用作训练小的数据集用作测试,大的数据集(Big_set)和小的数据集(Small_set)之间没有重合的人物。2:大的数据集(Big_set)有特别多张照片(比如1 Million),每张图片会给其对应的标签信息,用于训练网络,训练网络可以使用contrastive loss, triplet loss,softmax loss 等...
2019-07-18 20:21:06 656
原创 Faster RCNN loss_rpn_box_reg = nan分析
首先整体架构使用的是torchvision0.3版本自带的模块。所以找问题都是从自己写的代码开始。自己架构是否有问题:固定一下optimizer = torch.optim.SGD(model.parameters(), lr = lr, momentum=0.9, weight_decay=1e-2)1:图像处理:根据官方给的手册归一化到了[0, 1]之间应该没问题,2:标签问题:tar...
2019-07-15 20:24:40 2106 1
原创 MTCNN论文阅读及代码理解
MTCNN,全称Joint Face Detection and Alignment usingMulti-task Cascaded Convolutional Networks,2016年提出,论文发表在普通sci上(没有自己研究过,由于sphere face 用的这个才找的), 主要研究的是人脸检测(人脸目标框定位和关键点检测),这篇文章提出三段网络分阶段训练。PNet:训练数据:W...
2019-07-02 21:08:16 546
原创 BUG管理
1:复现faster rcnn代码中,class faster rcnn继承了父类GeneralizedRCNN,开始在写的过程中没使用super.__init()__(),造成了'FasterRCNN' object has no attribute '_modules'2:python中list乘法真的巨坑,初始值为一个int类型list a = [1, 2, 3],如果 令 a = a ...
2019-06-21 09:46:12 203
原创 Pytorch高级代码技巧
1:使用Image[None]的形式扩充维度,None很好用(适用于numpy,pytorch等,对python自身class不好用)2:循环中调用两个list使用zip函数3:将list变成pytorch格式,使用torch.as_tensor4:pytorch.cat 做拼接...
2019-06-21 09:27:27 190
原创 精读论文(1)------RegularFace
好久没读新论文,今天找的这篇论文可读性非常高,很适合精读。RegularFace: Deep Face Recognition via Exclusive Regularization摘要:传统的人脸识别都是希望同一类别的图片在特征空间中距离比较近,而不同类别在特征空间中距离比较远(The Intra-class compactness and inter-class separabilit...
2019-06-19 10:12:05 2715 4
原创 CVPR人脸识别梳理
1:Feature Transfer Learning for Face Recognition with Under-Represented Data基于数据不足的数据集通过特征迁移学习人脸识别。2:Disentangled Representation Learning for 3D Face Shape将3D的人脸形状分解成认证部分(identity part)和表示部分...
2019-06-18 09:07:35 4737
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人