注:机翻,未校。
A semiotic interpretation of the derivative concept in a textbook
微积分教材中导数概念的符号学解读
Original Article
Published: 30 July 2018
Volume 50, pages 881–892, (2018)
Abstract
Differential and integral calculus textbooks are widely used as the main resource for teaching. They appear in a variety of forms and adopt various approaches to present the content. In this paper, we turn our attention to one chapter of a calculus textbook and our focus is on the introduction of the derivative concept. With the purpose of examining the presentation of the derivative concept in the textbook, we give a view of Peirce’s semiotics, in particular of his classification of sign-vehicles. The analysis allows us to point out that the sign-vehicle in relation to the derivative concept may be iconic, indexical, or symbolic. These do not constitute mutually exclusive kinds of signs, but they are interrelated in such a way that we can identify iconicity in indexicality and indexicality in symbolicity. We conclude that the textbook has the potential to enable students to conceptualize the derivative. However, in some aspects, the book may constrain students’ conceptualization and it could be improved to meet the students’ needs to make meaning of the derivative concept.
微积分教材广泛用作教学的主要资源,它们以多种形式出现,并采用多种方法来呈现内容。本文将关注点放在一本微积分教材的一个章节上,重点是导数概念的引入。为了考察教材中导数概念的呈现方式,我们从皮尔斯的符号学视角出发,特别是他关于符号载体的分类。分析使我们指出,与导数概念相关的符号载体可能是图像性的、指示性的或象征性的。这些符号类型并非相互排斥,而是相互关联,以至于我们可以在指示性中识别出图像性,在象征性中识别出指示性。我们得出结论,该教材有潜力使学生形成对导数的概念。然而,在某些方面,这本书可能会限制学生对导数概念的理解,并且可以改进以满足学生对导数概念的意义构建需求。
1 Introduction
Mathematics textbooks have a long history as support materials for teaching and learning mathematics. Significant research has been done on mathematics textbooks, and some of it has concluded that today, mathematics textbooks seem more similar in mathematical content than they are in appearance, pedagogical outlook, or support for the teacher (Kilpatrick 2014; Randahl and Grevholm 2010).
数学教材作为数学教学和学习的辅助材料有着悠久的历史。对数学教材的研究表明,如今的数学教材在数学内容上比在外观、教学理念或对教师的支持方面更为相似(Kilpatrick 2014;Randahl 和 Grevholm 2010)。
Regarding differential and integral calculus textbooks, some researchers have examined characteristics of textbooks, such as how the authors deal with the mathematical language, the kind of exercises presented after the definitions, and what is offered on one specific mathematical subject.
关于微积分教材,一些研究者考察了教材的特征,例如作者如何处理数学语言、定义后呈现的练习类型以及在某一特定数学主题上提供了什么内容。
In this paper, we turn our attention to a calculus textbook, and especially to the introduction of the derivative concept in this book. The derivative is a fundamental concept in differential and integral calculus, so the way it is introduced in a textbook aimed at novices in this subject is important for the students’ full comprehension regarding this concept (Randahl and Grevholm 2010; Tall 1992; Weigand 2014).
本文将关注点放在一本微积分教材上,特别是书中导数概念的引入。导数是微积分中的一个基本概念,因此在针对初学者的教材中引入导数的方式对于学生全面理解这一概念至关重要(Randahl 和 Grevholm 2010;Tall 1992;Weigand 2014)。
A mathematical object such as the derivative does not exist independently of its representations. Therefore, the construction of concepts is determined by the production or use of signs, so that signs play a primary and fundamental role in the presentation and refinement of mathematical concepts. This leads us to consider semiotics as a successful tool for analyzing the presentation of the derivative concept in a calculus textbook. In this paper, we refer to signs and their use and production in a textbook from the Peircean semiotics perspective.
像导数这样的数学对象并非独立于其表示形式而存在。因此,概念的构建取决于符号的产生或使用,符号在数学概念的呈现和精细化中起着首要和基础性的作用。这促使我们将符号学视为分析微积分教材中导数概念呈现方式的有力工具。在本文中,我们从皮尔斯的符号学视角出发,探讨教材中符号及其使用和产生的情况。
The semiotics of Charles Sanders Peirce has been used in mathematics education and several issues have been highlighted by means of this framework in the field of learning and teaching mathematics.
查尔斯·桑德斯·皮尔斯的符号学已在数学教育中得到应用,并通过这一框架在数学学习和教学领域突出了许多问题。
With the intention of using Peirce’s theory to analyze the presentation of the derivative concept in a textbook, we focus on the triad characterized by Peirce to refer to the relationship between the object and the sign-vehicle. In this triad, Peirce establishes that the sign-vehicle can be iconic, indexical, or symbolic in relation to the object.
为了使用皮尔斯的理论来分析教材中导数概念的呈现方式,我们关注皮尔斯所描述的三元组,它用于指代对象与符号载体之间的关系。在这个三元组中,皮尔斯认为符号载体可以是图像性的、指示性的或象征性的,与对象相对应。
We carry out an exploratory and interpretative study prioritizing the analysis of elements, which, within the Peircean semiotics perspective that we have taken in this paper, are relevant to the presentation of the derivative concept in the textbook.
我们进行了一项探索性和解释性的研究,优先分析在本文所采用的皮尔斯符号学视角下与教材中导数概念呈现相关的要素。
The objective of this analysis is to examine how the mathematical signs are presented and connected in the textbook. Based on the assumptions of Peircean semiotics, we make some inferences regarding the potential of these signs to enable or constrain students’ conceptualization of the derivative.
本研究的目的是考察教材中数学符号的呈现和连接方式。基于皮尔斯符号学的假设,我们对这些符号在促进或限制学生对导数概念理解方面的潜力进行了一些推断。
2 Differential and integral calculus textbooks and the derivative concept
Textbooks used by professors and students at universities, as is the case of the differential and integral calculus books, are commonly the main resource for teaching. The textbook indicates which topics will be studied and how each particular part of the content will be approached, so that the textbook provides professors with a framework to guide their teaching (Pepin et al. 2013).
在大学中,教授和学生所使用的教材,如微积分教材,通常是教学的主要资源。教材指明了将要学习的主题以及如何处理每一部分内容,从而为教授提供了指导教学的框架(Pepin 等 2013)。
From this point of view, the textbook is a support for calculus lectures, both for students’ preliminary reading, to indicate how a particular subject will be developed, and as the main resource for a professor to teach. Furthermore, the textbook may be material for self-instruction, as suggested by Kilpatrick (2014). In fact, in most cases, the study of a given content is not limited to the classroom alone; activities relevant to learning a concept are also carried out outside the classes (Richitet et al. 2014).
从这个角度来看,教材是微积分课程的辅助材料,既可用于学生的预习,以表明某一特定主题将如何展开,也可作为教授教学的主要资源。此外,教材可以作为自学材料,正如 Kilpatrick (2014) 所建议的那样。事实上,在大多数情况下,对某一内容的学习并不局限于课堂;与学习概念相关的活动也在课堂之外进行(Richitet 等 2014)。
Discussions concerning the challenges of learning calculus in lectures have pointed out that the way the concept is introduced is important for students to make meaning [meaning-making] related to mathematical concepts. The textbook is also relevant in this context, in that the presentation of the concept should encourage interest, create motivation, and start the process of meaning-making (Lue 2014; Randahl and Grevholm 2010).
关于在课堂上学习微积分的挑战的讨论指出,概念的引入方式对于学生构建与数学概念相关的意义至关重要。在这一背景下,教材也很重要,因为概念的呈现应该激发兴趣、创造动力,并启动意义构建的过程(Lue 2014;Randahl 和 Grevholm 2010)。
In this paper, we turn our attention to one chapter of a calculus textbook, and our focus is on the introduction of the derivative concept. This is one of the most important concepts in differential and integral calculus.
本文将关注点放在一本微积分教材的一个章节上,重点是导数概念的引入。导数是微积分中的一个重要概念。
The presentation of the derivative concept starts, in most cases, from ideas of limit that are already known by the students, so that the tangent line and average velocity are the initial ideas with which to begin the study of derivatives. The very history of mathematics indicates that the concept of derivative and differentiability of the function are graphical in their origin. They were arithmetized in the nineteenth century through the contributions of Cauchy (in Paris) and Weierstrass (in Berlin), beginning what would become a model for calculus lectures. According to Randahl and Grevholm (2010), this model created a need for professors and textbooks to characterize the processes of calculating the limit of the quotient of differences and the formal definition of the derivative.
导数概念的呈现通常从学生已经熟悉的极限概念开始,切线和平均速度是开始研究导数的最初想法。数学史表明,导数和函数可微性的概念最初是图形化的。它们在19世纪通过柯西(在巴黎)和魏尔斯特拉斯(在柏林)的贡献被算术化,开启了微积分课程的模型。根据 Randahl 和 Grevholm (2010),这一模型促使教授和教材需要描述差商极限的计算过程以及导数的正式定义。
The study of the derivative concept has to take into account and distinguish the local and the global aspects of this concept, namely, the definition of the derivative at a point and the definition of the new function, f’, the derivative of function f.
对导数概念的研究必须考虑并区分这一概念的局部和全局方面,即在一点处的导数定义以及新函数 f′(函数 f 的导数)的定义。
In this way, the introduction of the derivative concept in calculus lectures may consider the informal characteristics in order to establish the formal character of this concept. In this context, the study of the derivative is not independent of the use of signs and the relationships between signs. To examine the presentation of the derivative concept in a calculus textbook, we use some elements of Peirce’s semiotics.
因此,微积分课程中导数概念的引入可能会考虑非正式的特征,以建立这一概念的形式特征。在这种情况下,导数的研究并非独立于符号的使用以及符号之间的关系。为了考察微积分教材中导数概念的呈现方式,我们使用了皮尔斯符号学的一些要素。
3 Peircean semiotics and mathematics education
Over the last decades, semiotics has gained the attention of numerous researchers in mathematics education and there is a consensus among them that mathematical objects are ideal, general in nature, and it is necessary to employ sign-vehicles to represent them and work with them; sign-vehicles are not the mathematical objects themselves, but represent them in some way.
在过去的几十年中,符号学吸引了众多数学教育研究者的关注,他们一致认为数学对象是理想的、普遍的,必须使用符号载体来表示它们并与之工作;符号载体并非数学对象本身,而是以某种方式代表它们。
Signs themselves have intrinsic meanings independent of the interpreter, but these meanings are considered to be interpreted taking into account the subjectivity of the interpreter when he/she translates signs into other signs (Sáenz-Ludlow and Zellweger 2016; Nöth 2008).
符号本身具有独立于解释者的内在意义,但这些意义被认为是在解释者将符号转化为其他符号时,考虑到解释者的主观性而被解释的(Sáenz-Ludlow 和 Zellweger 2016;Nöth 2008)。
As considered by Hoffmann (2006), the use of signs in mathematics education can be established from different semiotic perspectives. In this paper, we focus on the assumptions of Charles Sanders Peirce (1839–1914). Peirce’s notion of a sign is that it is something that stands for something to somebody in some respect or capacity. With Peirce, a far-reaching project is introduced to demonstrate the importance of signs, how knowledge and experience depend on signs and actions of signs, how sign-vehicles indicate and symbolize their objects, how signs are interpreted, and how communicating and meaning-making are intertwined and mediated by signs (Otte 2006; Peirce 1972, 1992, 2005; Colapietro 2004; Santaella 2008; Nöth 2008).
正如霍夫曼(Hoffmann 2006)所考虑的那样,可以从不同的符号学视角来建立数学教育中符号的使用。在本文中,我们关注查尔斯·桑德斯·皮尔斯(1839–1914)的假设。皮尔斯关于符号的概念是,它是一种在某方面或某种程度上代表某物的东西。皮尔斯引入了一个深远的项目,以证明符号的重要性,知识和经验如何依赖于符号及其作用,符号载体如何指示和象征它们的对象,符号如何被解释,以及交流和意义构建如何相互交织并由符号介导(奥特 2006;皮尔斯 1972,1992,2005;科拉皮特罗 2004;桑塔埃拉 2008;诺特 2008)。
We concentrate on what Kadunz (2016b) calls the “trademark feature” of the Peircean semiotics: the sign as a triadic relation. In Peircean theory, the sign has a triadic nature constituted by three components: an object, a representamem or sign-vehicle, and an interpretant. The object is what the representamen refers to. The representamem or sign-vehicle is the form the sign takes, which is not necessarily a material object. The interpretant is a new sign produced by the interpreter and corresponds to the interpretative effect that the sign produces in the interpreter’s mind.
我们关注卡杜恩(Kadunz 2016b)所称的皮尔斯符号学的“标志性特征”:符号作为三元关系。在皮尔斯理论中,符号具有由三个组成部分构成的三元性质:对象、代表物或符号载体以及解释项。对象是代表物所指代的内容。代表物或符号载体是符号所采取的形式,它不一定是物质对象。解释项是由解释者产生的新符号,对应于符号在解释者心中产生的解释效果。
Taking into account this semiotics perspective, we can consider that conceptualization and meaning-making are mediated by the relationship between the three sign components. Peirce’s own formulations of the triadic sign relation suggest that the irreducibility of the triadic relation, which links sign-vehicle, object, and interpretant, is a consequence of an internal coordination of relations between each of the three pairs of components of the sign (sign-vehicle, object, interpretant) (Presmeg 2008; Kadunz 2016b).
考虑到这种符号学视角,我们可以认为概念化和意义构建是由三个符号组成部分之间的关系所介导的。皮尔斯对三元符号关系的表述表明,连接符号载体、对象和解释项的三元关系的不可还原性,是符号的三个组成部分(符号载体、对象、解释项)之间每对关系的内部协调的结果(普雷斯梅格 2008;卡杜恩 2016b)。
In this paper, our focus is the part of the triad that deals with the relationship between a sign-vehicle and its object. The nature of this relationship may be one of three types: icon, index, and symbol.
在本文中,我们的关注点是三元组中涉及符号载体与其对象之间关系的部分。这种关系的性质可以是三种类型之一:图像、指示和象征。
An icon is a sign-vehicle that stands for the object by a relation of similarity. The icon refers to the object that it denotes merely by virtue of characters of its own that it possesses, regardless of whether any such object actually exists. So icons directly relate to the object of the sign.
图像符号是一种通过相似性关系代表对象的符号载体。图像符号仅凭借其自身所具有的特征来指代它所表示的对象,无论这样的对象是否实际存在。因此,图像符号直接与符号的对象相关联。
Kadunz (2016b), referring to Stjernfelt (2000), considers that the impression of similarity comes into existence from possible activity we can do with the icon. In fact, Stjernfelt (2000), notes that “The icon is not only the only kind of sign involving a direct representation of qualities pertaining to its object; it is also—and this amounts to the same—the only sign by the contemplation of which more can be learnt than lies in the directions for its construction” (p. 358). According to Kadunz (2016b), these constructions and the activities developed with them may be the source of new knowledge.
卡杜恩(Kadunz 2016b),引用斯特恩菲尔特(Stjernfelt 2000)的观点,认为相似性的印象来自于我们可以通过图像符号进行的可能活动。事实上,斯特恩菲尔特(Stjernfelt 2000)指出:“图像符号不仅是唯一涉及对其对象的直接品质表征的符号;而且——这相当于同一件事——图像符号也是唯一一种通过对其的思考可以学到比其构建方向更多的东西的符号”(第 358 页)。根据卡杜恩(Kadunz 2016b)的观点,这些构建以及与之相关的活动可能是新知识的来源。
In Peircean theory, the word ‘index’ is used in a very broad sense and the indexical aspect can be seen in many kinds of signs. Overall, an indexical sign represents the object because it has an existential connection to that object. In addition, Peirce thinks that index is a link to “the senses and the memory of the person for whom it serves as a sign” (Pape 2007, p. 47—quoted by Kadunz 2016a).
在皮尔斯理论中,“指示符号”一词的使用范围非常广泛,指示性特征可以在许多类型的符号中看到。总体而言,指示性符号代表对象是因为它与该对象存在一种存在性的联系。此外,皮尔斯认为指示符号是与“作为符号为某人服务的感觉和记忆”的一种联系(Pape 2007,第 47 页——引用卡杜恩 2016a)。
A symbol is a sign that refers to the object that it denotes by virtue of a law, usually an association of general ideas that operate to cause the symbol to be interpreted as referring to that object. The nature of symbolic signs is that these are elements of convention in relating a particular sign-vehicle to its object (e.g., algebraic symbolism in mathematics). In mathematics, symbolic signs are widely used especially because we refer to mathematical objects by definitions. From the semiotics point of view, it is possible that this is why people sometimes refer to mathematical language as a symbolic language. Nevertheless, mathematics per se deals with a great variety of sign-vehicles that even can be symbols (as characterized by Peirce), but also can be symbolic connections, involving diagrams, graphs, that may be indexical or iconic sign-vehicles in relation to their objects.
象征符号是一种通过法则来指代其所表示对象的符号,通常是一种一般观念的关联,这种关联使得象征符号被解释为指代该对象。象征符号的性质在于,它们是将特定符号载体与其对象联系起来的惯例元素(例如,数学中的代数符号)。在数学中,广泛使用象征符号,特别是因为我们通过定义来指代数学对象。从符号学的角度来看,这可能是为什么人们有时将数学语言称为象征语言的原因。然而,数学本身涉及各种符号载体,它们可以是符号(如皮尔斯所描述的),也可以是涉及图表、图形的象征性联系,这些图表和图形可能是与其对象相关的指示性或图像性符号载体。
However, a relevant characteristic of the triad is that icon, index, and symbol are not separate or autonomous signs; they are not three mutually exclusive kinds of signs. What Peirce (2005) very well demonstrates is that this triad is nested, so that more complex signs contain and involve aspects of simpler signs. They are sequentially embedded in the sense that symbols typically involve indices which, in turn, involve icons. Conversely, icons are incomplete indices which are, again, incomplete symbols (Saénz-Ludlow and Kadunz 2016, p. 8).
然而,三元组的一个重要特征是,图像、指示和象征并非独立或自主的符号;它们并非三种互不相关的符号类型。皮尔斯(2005)很好地证明了这个三元组是嵌套的,因此更复杂的符号包含并涉及更简单符号的方面。它们是顺序嵌入的,即象征符号通常涉及指示符号,而指示符号又涉及图像符号。反之,图像符号是不完整的指示符号,而指示符号又是不完整的象征符号(萨恩斯 - 卢德洛和卡杜恩 2016,第 8 页)。
As Wells (1967) argues, Peirce’s great contribution was the characterization of the sign’s indexicality and the conclusion that the sign-vehicles are embedded so that we can identify iconicity in indexicality and indexicality in symbolicity. It is through these relationships that the conceptualization of the object occurs in the interpreter’s mind, which produces new signs that can involve icons, indexes, or symbols.
正如威尔斯(Wells 1967)所言,皮尔斯的伟大贡献在于对符号的指示性的描述,以及得出符号载体是嵌套的这一结论,因此我们可以在指示性中识别出图像性,在象征性中识别出指示性。正是通过这些关系,对象的概念化在解释者的脑海中发生,从而产生涉及图像、指示或象征的新符号。
Like other sign-vehicles, mathematical sign-vehicles (e.g., mathematical diagrams, graphs, notations, mathematical linguistic expressions) can only indicate some aspects of a mathematical object, but not all of its characteristics and properties at the same time they bring some of them to the foreground and keep others in the background. Consequently, the process of conceptualization and of meaning-making for mathematical objects (i.e., concepts) can be seen as a recursive process mediated by a diversity of mathematical signs (Steinbring 2006; Saénz-Ludlow and Kadunz 2016).
与其他符号载体一样,数学符号载体(例如,数学图表、图形、符号、数学语言表达)只能指示数学对象的某些方面,而不能同时展现其所有特征和属性。它们将其中一些方面置于前景,而将其他方面置于背景。因此,数学对象(即概念)的概念化和意义构建过程可以被视为由多种数学符号所介导的递归过程(斯坦布林 2006;萨恩斯 - 卢德洛和卡杜恩 2016)。
The fruitful and intrinsic relationship between sign-vehicle, object, and interpretant is approached by a range of professors and researchers in the field of mathematics education as a means of studying epistemological questions, an instrument for describing learning and teaching mathematics, a way of interpreting classroom communication, and so on (Radford et al. 2008; Presmeg 2006; Almeida and Silva 2017; Sáenz-Ludlow and Kadunz 2016).
符号载体、对象和解释项之间富有成果且内在的关系被数学教育领域的众多教授和研究者用作研究认识论问题的手段、描述数学学习和教学的工具、解释课堂交流的方式等(拉福德等 2008;普雷斯梅格 2006;阿尔梅达和席尔瓦 2017;萨恩斯 - 卢德洛和卡杜恩 2016)。
However, the conceptualization process intended to be carried out by signs is co-constructed by those who teach or by the material presenting what is to be conceptualized by the student (as is the case of the textbook), together with those who receive the information and have their own interpretation processes.
然而,符号所意图进行的概念化过程是由那些进行教学或呈现要由学生概念化的材料的人(如教材),以及那些接收信息并拥有自己的解释过程的人共同构建的。
The textbook plays a key role in the development of mathematical reasoning, thinking habits, and consequently, in the conceptualization of mathematical objects. Mathematical signs used in the textbook are mainly seen as instruments for coding and describing the mathematical objects (i.e., concepts), for operating with these objects, as well as communicating mathematical knowledge to professors and students. Subsequently, the way mathematical signs are presented and connected in the textbook can enable or constrain students conceptualizing the derivative.
教材在发展数学推理、思维习惯以及数学对象的概念化方面发挥着关键作用。教材中使用的数学符号主要被视为对数学对象(即概念)进行编码和描述、操作这些对象以及向教授和学生传达数学知识的工具。因此,教材中数学符号的呈现和连接方式可以促进或限制学生对导数的概念化。
4 The derivative concept in a calculus textbook
Under the lens of the Peircean triadic system of signs, we look at the introduction of the derivative concept in a differential and integral calculus textbook. For this reason, we analyze Volume 1 (the sixth edition published in 2009) of the book Calculus, written by James Stewart.
在皮尔斯三元符号系统的视角下,我们研究微积分教材中导数概念的引入。因此,我们分析了詹姆斯·斯图尔特所著的《微积分》(2009 年出版的第六版)第一卷。
This book includes the study of functions, limits, derivatives, and integrals of single-valued functions, and consists of eight chapters and nine appendices. In the preface, the author himself writes that the emphasis of the book is on understanding concepts, so our attention is focused on how the introduction of the derivative concept is presented. This content forms part of Chap. 2 of the book and is entitled Limits and derivatives. In the first section, the book presents ideas and considerations about tangents and velocity. From Sect. 2.2 to 2.6, the book presents the intuitive notion, the definition, and some properties and techniques for the calculation of limits, as well as the characterization of continuous functions. We analyze Sect. 2.7 and 2.8 that refer to the derivative concept. There are examples after each new definition, but they are rarely used to introduce new information regarding the derivative concept. Therefore, we refer only once to an example for the purpose of classifying a sign.
本书包括对单值函数的函数、极限、导数和积分的研究,由八章和九个附录组成。在前言中,作者自己写道,本书的重点是理解概念,因此我们的关注点集中在导数概念的引入是如何呈现的。这部分内容构成了书中第二章的内容,标题为“极限与导数”。在第一部分,书中介绍了关于切线和速度的想法和考虑。从第 2.2 节到第 2.6 节,书中介绍了极限的直观概念、定义以及一些计算极限的性质和技术,以及连续函数的特征。我们分析了涉及导数概念的第 2.7 节和第 2.8 节。每个新定义之后都有示例,但很少用来介绍关于导数概念的新信息。因此,我们仅引用一次示例,目的是对符号进行分类。
We conduct an exploratory and interpretative study with the goal of analyzing elements that we consider relevant from a semiotic perspective, for the presentation of the derivative concept. The aim of this analysis is to examine how mathematical signs are presented and connected in the textbook. Based on the assumptions of Peircean semiotics, these signs can be characterized as iconic, indexical, and symbolic. We make some inferences regarding the possibilities of enabling or constraining students to conceptualize the derivative. We also take into consideration how these signs can be interpreted and understood by students when using the textbook. Our considerations about the textbook are divided into three sections, which we present below.
我们进行了一项探索性和解释性的研究,目的是分析我们认为从符号学角度对导数概念的呈现具有相关性的要素。本研究的目的是考察教材中数学符号的呈现和连接方式。基于皮尔斯符号学的假设,这些符号可以被描述为图像性的、指示性的和象征性的。我们对这些符号在促进或限制学生对导数概念化方面的可能性进行了一些推断。我们还考虑了学生在使用教材时对这些符号的解释和理解方式。我们对教材的考虑分为三个部分,如下所述。
4.1 The local aspect of the derivative concept: the derivative of a function at a point
导数概念的局部方面:函数在一点上的导数
Throughout Sect. 2.7, the author constructs the derivative concept of a function at a point a in its domain. The section begins with a mathematical linguistic expression, as shown in Fig. 1.
在第 2.7 节中,作者构建了函数在其定义域中某点 a 处的导数概念。该节以一个数学语言表达式开始,如图 1 所示。
Fig. 1
Source: Stewart (2009, p. 143)
The beginning of Sect. 2.7.
If we take into account Bender and Schreiber’s (1985) argumentation, we can consider that the derivative concept will be presented in the book in an operative way, i.e., starting from a purpose (to define the derivative at a given point), standards for the presentation are developed to meet this purpose.
如果考虑到本德和施赖伯(1985)的论点,我们可以认为书中将以一种操作性的方式呈现导数概念,即从一个目的(定义给定点处的导数)出发,开发出符合这一目的的呈现标准。
Each mathematical sign-vehicle used in the development of the derivative concept can indicate only some aspects of this mathematical object, not all of its characteristics and properties at the same time. However, each particular sign-vehicle has to express a referential relationship with the object and has to indicate the possibilities with which the signs are used as a means of knowing the object.
在导数概念的发展中所使用的每个数学符号载体只能指示这一数学对象的某些方面,而不能同时展现其所有特征和属性。然而,每个特定的符号载体必须表达与对象的指代关系,并且必须表明符号被用作认识对象的手段的可能性。
The sign-vehicle (mathematical linguistic expression) in Fig. 1 refers to the object derivative as a limit. However, students (readers of the book) already know the concept of limit, since it was presented in earlier sections on the book. In addition, the author himself refers to the limit in his presentation of Fig. 1 and does so throughout the text. Thus, students can use what they already know in order to achieve the target (derivative concept). A sign can represent something for somebody if this person already knows how to interpret this sign. It is the given collateral knowledge that creates what we may call “familiarity” with a sign (Hoffmann and Roth 2007). Additionally, it can be supposed that when the study of the derivative starts, students already have the collateral knowledge concerning limits. However, by ‘collateral knowledge’, Peirce does not mean the mere acquaintance with the system of signs, such as the prerequisite for getting any idea signified by the sign. By collateral knowledge, Peirce means all previous acquaintance with what the sign denotes (Peirce 2005).
图 1 中的符号载体(数学语言表达式)将对象“导数”描述为一个极限。然而,学生(书的读者)已经知道极限的概念,因为这一概念在书中前面的部分已经介绍过。此外,作者在介绍图 1 时也提到了极限,并且在整篇文本中都这样做了。因此,学生可以利用他们已有的知识来实现目标(导数概念)。如果一个人已经知道如何解释一个符号,那么这个符号就可以为某人代表某物。是已有的相关知识创造了我们所说的对符号的“熟悉感”(霍夫曼和罗斯 2007)。此外,可以假设在开始学习导数时,学生已经具备了关于极限的相关知识。然而,皮尔斯所说的“相关知识”并不是指仅仅熟悉符号系统,比如理解符号所表示的任何概念的前提条件。皮尔斯所说的“相关知识”是指对符号所指代内容的所有先前的了解(皮尔斯 2005)。
In this way, the sign-vehicle ‘special type of limit is called a derivative’ (Fig. 1) has some similarity with the object of the sign (derivative concept) and it involves qualities pertaining to this object. In this sense, it can be seen as an icon.
因此,“特殊类型的极限称为导数”(图 1)这一符号载体与符号的对象(导数概念)有一定的相似性,并且涉及与该对象相关的特征。从这个意义上说,它可以被视为一个图像符号。
After the presentation of the sign-vehicle that the derivative of a function at a point is a limit, the book presents other concepts that are relevant to the activity one can develop with this icon. The slopes of a secant line and a tangent line of a function f at a point (a, f(a)) are then defined as shown in Fig. 2.
在介绍了函数在某点的导数是一个极限这一符号载体之后,书中介绍了与这一图像符号相关的其他概念。函数 f 在点 (a, f(a)) 处的割线和切线的斜率被定义为如图 2 所示。
Fig. 2
Source: Stewart (2009, p. 144)
Slopes of a secant line and a tangent line.
割线和切线的斜率
Considering the operative way in which the derivative concept of a function at a point will be presented in the book, the author should then build the derivative concept in order to make it comprehensible to the readers.
考虑到书中将以一种操作性的方式呈现函数在某点的导数概念,作者随后应该构建导数概念,以便读者能够理解。
The mathematical expressions m = lim x → a f ( x ) − f ( a ) x − a m=\mathop {\lim }\nolimits_{{x \to a}} \frac{{f(x) - f(a)}}{{x - a}} m=limx→ax−af(x)−f(a) and m = lim h → 0 f ( a + h ) − f ( a ) h m=\mathop {\lim }\nolimits_{{h \to 0}} \frac{{f(a+h) - f(a)}}{h} m=limh→0hf(a+h)−f(a) are sign-vehicles that refer to the limit of f as x approaches a. At the same time, however, readers (students) may conclude (at this moment) that there is a connection between these sign-vehicles and the derivative concept. So, according to Peirce’s theory, these sign-vehicles are links to the senses and memory of the students. In this way, for the students who are reading the book, it seems that these are indexical sign-vehicles in relation to the derivative concept object. These signs, however, will have a different status for students when they are familiar with the concept of derivative. The distinctions among the three kinds of sign-vehicles (icon, index, and symbol) in mathematical signs are sometimes complicated by the fact that people may categorize the same signs in different ways, keeping in mind what they know about the object when they look at the sign (Presmeg 2008).
数学表达式 (m=\mathop {\lim }\nolimits{{x \to a}} \frac{{f(x) - f(a)}}{{x - a}}) 和 (m=\mathop {\lim }\nolimits{{h \to 0}} \frac{{f(a+h) - f(a)}}{h}) 是指当 x 接近 a 时 f 的极限的符号载体。然而,与此同时,读者(学生)可能会得出结论(在这一刻),这些符号载体与导数概念之间存在联系。因此,根据皮尔斯的理论,这些符号载体是与学生的感官和记忆相联系的。这样,对于正在阅读这本书的学生来说,这些似乎是与导数概念对象相关的指示性符号载体。然而,当学生熟悉导数概念时,这些符号将具有不同的地位。在数学符号中,三种符号载体(图像、指示和象征)之间的区别有时会因为人们在考虑符号时根据他们对对象的了解以不同的方式对相同的符号进行分类而变得复杂(普雷斯梅格 2008)。
Finally, the derivative of a function f at a point a in its domain is defined as indicated in Fig. 3.
最后,函数 f 在其定义域中的某点 a 处的导数被定义为如图 3 所示。
Fig. 3
Source: Stewart (2009, p. 146)
Definition of the derivative of f at a point.
This definition is, by itself, a symbol, since it refers to the derivative by means of a conventional rule, a recognized law. This symbol is constituted by an association of signs that were presented in Sect. 2.7 of the book. The sign-vehicle f ′ ( a ) = lim x → a f ( x ) − f ( a ) x − a f^{\prime}(a)=\mathop {\lim }\nolimits_{{x \to a}} \frac{{f(x) - f(a)}}{{x - a}} f′(a)=limx→ax−af(x)−f(a) is, in this sense, the symbol that brings together other sign-vehicles that somehow refer to the derivative concept throughout Sect. 2.7.
这一定义本身就是一个象征符号,因为它通过一条常规规则、一条公认的法则来指代导数。这个象征符号是由书中第 2.7 节所介绍的符号的关联构成的。在这个意义上,符号载体 f ′ ( a ) = lim x → a f ( x ) − f ( a ) x − a f^{\prime}(a)=\mathop {\lim }\nolimits_{{x \to a}} \frac{{f(x) - f(a)}}{{x - a}} f′(a)=limx→ax−af(x)−f(a) 是一个象征符号,它将第 2.7 节中以某种方式指代导数概念的其他符号载体聚集在一起。
One aspect that deserves attention in the textbook introduction of the derivative concept is the definition in Fig. 3, in which the author writes “The derivative of a function f at a number a, denoted by f’(a) …”
在教材对导数概念的介绍中,值得关注的一个方面是图 3 中的定义,其中作者写道:“函数 f 在数字 a 处的导数,记作 f’(a)……”
It is not usual to refer to domain values of a function for which the derivative of the function f exists as “at a number a”. Most authors of differential and integral calculus and real analysis books around the world usually write “at a point a” of its domain, or simply, write “at a in the domain of f”. James Stewart, however, throughout his book, Calculus (Vol. 1), refers to domain values of a function as being numbers (e.g., a) and uses the word point only when referring to (a, f(a)). This may cause some confusion for less attentive readers, or for readers with little experience in the study of functions or with little access to calculus or real analysis books. In this paper, we chose always to write ‘derivative of f at a point in its domain’.
将函数 f 的导数存在的定义域值称为“在数字 a 处”并不常见。世界上大多数微积分、实分析书籍的作者通常会写“在其定义域的 a 点”或简单地写“在 f 的定义域中的 a”。然而,詹姆斯·斯图尔特在他的《微积分》(第 1 卷)中始终将函数的定义域值称为 数字(例如,a),并且只有在提到 (a, f(a)) 时才使用“点”这个词。这可能会让不够细心的读者,或者对函数学习经验较少、接触微积分或实分析书籍较少的读者感到困惑。在本文中,我们始终选择写“函数 f 在其定义域中的某点的导数”。
As the author also indicates in Fig. 1, two more characteristics of the derivative of a function at a point are presented in the book. First, as we have already pointed out, the author defined the slope of a tangent line before he introduced the derivative definition. Once it was defined that f ′ ( a ) = lim x → a f ( x ) − f ( a ) x − a f^{\prime}(a)=\mathop {\lim }\nolimits_{{x \to a}} \frac{{f(x) - f(a)}}{{x - a}} f′(a)=limx→ax−af(x)−f(a), the author also characterizes the tangent line to f at the point (a, f(a)), as is shown in Fig. 4.
正如作者在图 1 中也指出的那样,书中还介绍了函数在某点的导数的另外两个特征。首先,正如我们已经指出的,作者在引入导数定义之前定义了切线的斜率。一旦定义了 f ′ ( a ) = lim x → a f ( x ) − f ( a ) x − a f^{\prime}(a)=\mathop {\lim }\nolimits_{{x \to a}} \frac{{f(x) - f(a)}}{{x - a}} f′(a)=limx→ax−af(x)−f(a),作者还描述了 f 在点 (a, f(a)) 处的切线,如图 4 所示。
Fig. 4
Source: Stewart (2009, p. 147)
Tangent line to f at a point.
与 f 在某一点的切线
We can infer that the symbols f ′ ( a ) = lim x → a f ( x ) − f ( a ) x − a f^{\prime}(a)=\mathop {\lim }\nolimits_{{x \to a}} \frac{{f(x) - f(a)}}{{x - a}} f′(a)=limx→ax−af(x)−f(a) and m = lim h → 0 f ( a + h ) − f ( a ) h m=\mathop {\lim }\nolimits_{{h \to 0}} \frac{{f(a+h) - f(a)}}{h} m=limh→0hf(a+h)−f(a) are connected with other signs in relation to the mathematical object derivative of a function f at a point. In fact, they are related to with the icon “The tangent line to y = f(x) at (a, f(a)) is the line through (a, f(a)), whose slope is equal to f ′ ( a ) f^{\prime}(a) f′(a), the derivative of f at a” and with the indexical sign-vehicle that is the graph shown in Fig. 4.
我们可以推断,符号 f ′ ( a ) = lim x → a f ( x ) − f ( a ) x − a f^{\prime}(a)=\mathop {\lim }\nolimits_{{x \to a}} \frac{{f(x) - f(a)}}{{x - a}} f′(a)=limx→ax−af(x)−f(a) 和 m = lim h → 0 f ( a + h ) − f ( a ) h m=\mathop {\lim }\nolimits_{{h \to 0}} \frac{{f(a+h) - f(a)}}{h} m=limh→0hf(a+h)−f(a) 与数学对象“函数 f 在某点的导数”相关的其他符号有关。实际上,它们与图像符号“函数 y = f(x) 在 (a, f(a)) 处的切线是穿过 (a, f(a)) 的直线,其斜率等于 f ′ ( a ) f^{\prime}(a) f′(a),即 f 在 a 处的导数”以及图 4 中所示的图形这一指示性符号载体有关。
The other characteristic of the derivative concept at the point we want to refer to has also been announced by the author at the beginning of Sect. 2.7: “we will see that it can be interpreted as a rate of change …” Again, returning to the previous sections of the book, connections are established between average velocity, instantaneous rate of change, and the derivative, as shown in Fig. 5.
作者在第 2.7 节开头也提到了我们想要提到的导数概念在该点的另一个特征:“我们将看到它可以被解释为变化率……”再次回到书中前面的部分,建立了平均速度、瞬时变化率和导数之间的联系,如图 5 所示。
Fig. 5
Source: Stewart (2009, p. 145)
Derivative and rate of change.
导数和变化率。
The introduction of the derivative concept, shown in the book in an operative way, gives indications that icon, index, and symbol are not separate or autonomous sign-vehicles to refer to the derivative. Each sign-vehicle is not, in itself, sufficient to characterize fully the concept of derivative at a point. Instead, it seems that what Arzarello et al. (2009) called semiotic bundle is necessary. In the case of the derivative conceptualization, this semiotic bundle is made up of mathematical sign-vehicles such as graphs, formulas, language expressions, which in Peircean semiotics can be characterized as icon, index, and symbol.
书中以一种操作性的方式介绍导数概念,这表明图像、指示和象征并非是用于指代导数的独立或自主的符号载体。每个符号载体本身并不足以充分描述某点处导数的概念。相反,似乎有必要采用阿扎雷洛等人(2009)所称的“符号束”。在导数概念化的情况下,这个符号束由图表、公式、语言表达等数学符号载体组成,在皮尔斯符号学中可以被描述为图像、指示和象征。
From the semiotic point of view, the connections between the symbol f ′ ( a ) = lim x → a f ( x ) − f ( a ) x − a f^{\prime}(a)=\mathop {\lim }\nolimits_{{x \to a}} \frac{{f(x) - f(a)}}{{x - a}} f′(a)=limx→ax−af(x)−f(a), the interpretation of the value of f ′ ( a ) f^{\prime}(a) f′(a) as the slope of the tangent line to the graph of f at (a, f(a)), and the indication of that value as a rate of change, are the different elements of the semiotic bundle, which together favor the meaning-making of the derivative concept.
从符号学的角度来看,符号 f ′ ( a ) = lim x → a f ( x ) − f ( a ) x − a f^{\prime}(a)=\mathop {\lim }\nolimits_{{x \to a}} \frac{{f(x) - f(a)}}{{x - a}} f′(a)=limx→ax−af(x)−f(a)、将 f ′ ( a ) f^{\prime}(a) f′(a) 的值解释为 f 在 (a, f(a)) 处的切线的斜率,以及将该值表示为变化率之间的联系,是符号束的不同元素,它们共同促进了导数概念的意义构建。
If we look at the relations between the signs that refer to the concept of derivative in the textbook, it is easy to recognize that the collateral knowledge about limit, tangent line, secant line, and rate of change are essential for students to construct knowledge about the derivative concept.
如果我们查看教材中指代导数概念的符号之间的关系,很容易认识到关于极限、切线、割线和变化率的相关知识对于学生构建关于导数概念的知识是必不可少的。
4.2 From the derivative at a point to the concept of a differentiable function
从某一点的导数到可微函数的概念
In Sect. 2.8 of the book, the author intends to characterize the derivative as a function. Thus, in this section the book refers to global aspects of the derivative concept. In order to use f ′ ( a ) f^{\prime}(a) f′(a) as defined in Sect. 2.7, the author presents f ′ ( x ) f^{\prime}(x) f′(x) and the definition of a differentiable function as we show in Fig. 6.
在书中第 2.8 节,作者打算将导数描述为一个函数。因此,本节涉及导数概念的全局方面。为了使用在第 2.7 节中定义的 (f^{\prime}(a)),作者介绍了 (f^{\prime}(x)) 和可微函数的定义,如图 6 所示。
Fig. 6
Source: Stewart (2009, p. 154)
Derivative as a function.
作为函数的导数。
Because symbols are used in the inscription (2) of Fig. 6, the interpreted relationship of this inscription with the mathematical object derivative may be characterized as symbolic.
由于在图 6 的(2)中使用了符号,因此可以将这种铭文与数学对象“导数”之间的解释关系描述为象征性的。
The author’s practice of referring to the function domain values as numbers, as we have already noted in the previous section, is repeated in this section. In fact, to define a differentiable function, the author writes f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h f^{\prime}(x)=\mathop {\lim }\nolimits_{{h \to 0}} \frac{{f(x+h) - f(x)}}{h} f′(x)=limh→0hf(x+h)−f(x) and refers to f ′ ( a ) f^{\prime}(a) f′(a) by writing “let the number a vary”. Also, in the definition of the differentiable function in an interval, the following expression is used: f is differentiable “at every number in the interval”. Stewart’s unconventional way of referring to values in the domain of the function, however, is part of a sign-vehicle, which in relation to the derivative concept may be characterized as a symbol. It is possible that the readers’ meaning-making relative to the differentiable function can imply as a result that the only relation between f ′ ( a ) f^{\prime}(a) f′(a) and the function f ′ f^{\prime} f′ is by replacing a by x and writing it as f ′ ( x ) f^{\prime}(x) f′(x). Nevertheless, it must be conceptualized that f ′ f^{\prime} f′ is, by itself, a function with its own characteristics.
作者将函数定义域值称为“数字”的做法,正如我们在前一节中已经提到的,在这一节中再次出现。实际上,为了定义可微函数,作者写道 f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h f^{\prime}(x)=\mathop {\lim }\nolimits_{{h \to 0}} \frac{{f(x+h) - f(x)}}{h} f′(x)=limh→0hf(x+h)−f(x),并且通过写“让数字 a 变化”来提及 f ′ ( a ) f^{\prime}(a) f′(a)。此外,在区间内可微函数的定义中,使用了以下表达:f 在“区间内的每个 数字”处可微。然而,斯图尔特这种对函数定义域值的非常规称呼方式是符号载体的一部分,与导数概念相关,可以被描述为一个象征符号。读者对可微函数的意义构建可能意味着 f ′ ( a ) f^{\prime}(a) f′(a) 和函数 f ′ f^{\prime} f′ 之间的唯一关系是通过将 a 替换为 x 并将其写为 f ′ ( x ) f^{\prime}(x) f′(x)。然而,必须明确 f ′ f^{\prime} f′ 本身是一个具有自身特征的函数。
The idea of taking the reader (student) to think of f ′ f^{\prime} f′ as a function is further explored in the book in examples only. In this case, the author also suggests the use of software for the construction of f ′ f^{\prime} f′ from the analysis of values of the slope of the tangent line at some points of the graph of f. We show one of these examples in Fig. 7.
书中仅通过示例进一步探讨了引导读者(学生)将 f ′ f^{\prime} f′ 视为一个函数的想法。在这种情况下,作者还建议使用软件,通过分析 f 图形上某些点处切线斜率的值来构建 f ′ f^{\prime} f′。我们在图 7 中展示了其中一个示例。
Fig. 7
Source: Stewart (2009, p. 155)
The visualization of f and f’.
f 和 f′ 的可视化。
It must be observed that a mathematical object, such as a differentiable function, does not exist independently of the totality of its possible sign-vehicles, but it is not to be confused with any particular sign either. It is sure that f ′ f^{\prime} f′ cannot, as such, be depleted by any number of signs. In this way, the meaning-making by readers (students) may be seen as a recursive process mediated by a diversity of mathematical sign-vehicles. It is recursive in the sense that different signs can be constructed at a particular interpreting moment, and they may be refined in subsequent acts of interpretation by the students (Saénz-Ludlow and Kadunz 2016).
必须指出,一个数学对象,如可微函数,并不独立于其所有可能的符号载体而存在,但它也不能与任何一个特定的符号混淆。可以肯定的是,(f^{\prime}) 本身不能被任何数量的符号所耗尽。因此,读者(学生)的意义构建可以被视为一个由多种数学符号载体介导的递归过程。这种递归性在于,在特定的解释时刻可以构建不同的符号,并且它们可以在学生随后的解释行为中得到提炼(萨恩斯 - 卢德洛和卡杜恩 2016)。
In this sense, we have an indication that the textbook alone is not enough to promote student learning. It needs to be properly used in lectures by the professors.
从这个意义上说,我们有迹象表明,仅靠教材本身是不足以促进学生学习的。它需要在教授的讲课中得到恰当的使用。
4.3 How can a function fail to be differentiable?
识别函数不可微点
The relationship between the continuity and the differentiability of a function is explored in Sect. 2.8. This relationship is used in the book to show how the points where a function f is not differentiable can be identified as shown in Fig. 8.
在第 2.8 节中探讨了函数的连续性和可微性之间的关系。书中利用这种关系来展示如何识别函数 f 不可微的点,如图 8 所示。
Fig. 8
Source: Stewart (2009, p. 159)
How can a function fail to be differentiable?
函数如何可能不可微?
Section 2.8 contains a situation in which the motivation for a new idea is mediated by an example. The author uses an earlier example to introduce the idea of non-differentiability of a function at a point, and refers to the relation between continuity and differentiability of a function. Moreover, this relation has already been presented by means of the theorem “If f is differentiable at a, then f is continuous at a” (p. 158 in the book).
第 2.8 节包含了一个通过示例来激发新想法的情境。作者使用了一个早期的示例来引入函数在某点不可微的概念,并提及了函数的连续性和可微性之间的关系。此外,这种关系已经通过定理“如果 f 在 a 处可微,那么 f 在 a 处连续”(书中第 158 页)进行了介绍。
Three possibilities are discussed for a function not to have a derivative at a point. Firstly, the use of the graphic representation of each one of these possibilities is the mathematical technique that the author expects will enable readers (students) to identify how a function can fail to be differentiable. The other option that the book points out also emphasizes the visual aspect of the graphic representation of the function. In this way, the use of a calculator or a computer is suggested, to examine the graph and to identify points at which the function does not have a derivative.
讨论了函数在某点没有导数的三种可能性。首先,使用每种可能性的图形表示是作者期望能够使读者(学生)识别函数如何可能不可微的数学技术。书中指出的另一种选择也强调了函数图形表示的视觉方面。因此,建议使用计算器或计算机来检查图形并识别函数没有导数的点。
In this section, the author strongly uses the graphical representation of functions in which continuity and differentiability must be analyzed. The visualization of these graphs of functions may help to overcome a possible gap that separates the abstract symbolic mathematical objects and techniques and the meaning attached to them by the students who use the book (Radu 2008).
在这一节中,作者强烈使用了需要分析连续性和可微性的函数的图形表示。这些函数图形的可视化可能有助于弥合抽象符号数学对象和技术与使用该书的学生所赋予它们的意义之间的可能差距(拉杜 2008)。
The use of technology resources for the construction of graphical representations of functions and their derivatives (suggested in the textbook) can help to overcome this gap. In this sense, the semiotic bundle approach for the derivative in the textbook also includes this semiotic resource: the graph of functions as sign-vehicles relative to these mathematical objects.
使用技术资源来构建函数及其导数的图形表示(教材中建议的)可以帮助弥合这一差距。从这个意义上说,教材中导数的符号束方法也包括了这种符号资源:函数的图形作为与这些数学对象相关的符号载体。
The graphs in Fig. 8 are sign-vehicles that indicate how the graph of the function reflects the non-differentiability. These graphs are related to the icon: derivative is a limit. On one hand, they are indexical signs for students to identify the effect of non-differentiability on the function graph, while on the other hand, they are also symbols meant to help students recognize the graphic visualization of non-differentiable functions.
图 8 中的图形是表明函数图形如何反映不可微性的符号载体。这些图形与图像符号“导数是极限”相关。一方面,它们是学生用来识别函数图形上不可微性影响的指示性符号,另一方面,它们也是旨在帮助学生识别不可微函数图形可视化的象征符号。
5 Concluding remarks
结束语
From a Peircean semiotics perspective, we analyzed the derivative concept presentation in a calculus textbook aimed at beginners of differential and integral calculus. The analysis started with an exploration of Sect. 2.7 and 2.8 of the book, which refer to the introduction of the derivative concept.
从皮尔斯符号学的角度出发,我们分析了一本面向微积分初学者的教材中导数概念的呈现方式。分析从探索书中第 2.7 节和第 2.8 节开始,这两节涉及导数概念的引入。
The definition of the derivative is built up throughout these two sections in the book. The first presentation of the author in Fig. 1, however, already indicates an essential element of the derivative concept to be constructed: derivative is a limit. Taking into account this iconic sign-vehicle, first of all the local aspects of the derivative concept are introduced. This introduction starts with the presentation of the slopes of a secant line and a tangent line. These definitions can be considered an indexical sign-vehicle in relation to the derivative concept. The definition of the derivative in turn has characteristics of a symbolic sign-vehicle. As Otte (2008) notes, in the triad that refers to the relationship between object and sign-vehicle, the symbol is the process of the circular interaction between indexical and iconic elements.
在这本书的这两节中逐步构建了导数的定义。然而,作者在图 1 中的首次呈现已经指出了要构建的导数概念的一个基本要素:导数是一个极限。考虑到这个图像符号载体,首先引入了导数概念的局部方面。这一引言从介绍割线和切线的斜率开始。这些定义可以被视为与导数概念相关的指示性符号载体。导数的定义反过来具有象征性符号载体的特征。正如奥特(2008)所指出的,在涉及对象与符号载体之间关系的三元组中,象征符号是指示性和图像性元素之间循环互动的过程。
The process of conceptualization and meaning-making of the derivative can be seen as a recursive process mediated by the diversity of mathematical signs—icon, index, and symbol, as considered by Steinbring (2006), and Saénz-Ludlow and Kadunz (2016).
导数的概念化和意义构建过程可以被视为一个由多种数学符号——图像、指示和象征所介导的递归过程,正如斯坦布林(2006)、萨恩斯 - 卢德洛和卡杜恩(2016)所考虑的那样。
Once the symbolic sign to define the derivative of f at a point has been presented, its geometrical interpretation as the slope of the tangent line on the graph at the point (a, f (a)) is also shown. However, applications of this interpretation are not shown, whether in mathematics itself or in applications.
一旦呈现了用于定义函数 f 在某点的导数的象征符号,其几何解释——作为图形上点 (a, f(a)) 处的切线斜率——也得到了展示。然而,这种解释的应用并没有展示,无论是在数学本身还是在应用中。
The definitions of average velocity and instantaneous rate of change are also used in constructing the derivative concept. Regarding this construction, a recurring practice of this author is to present ideas that may help students make connections between their collateral knowledge and the new mathematical ideas. In fact, several times the author refers to definitions or examples from previous sections in the book in order to use them to construct the derivative concept.
平均速度和瞬时变化率的定义也被用于构建导数概念。关于这一构建,作者的一个常见做法是提出一些想法,帮助学生将他们的相关知识与新的数学概念联系起来。实际上,作者多次引用书中前面部分的定义或示例,以利用它们来构建导数概念。
In this respect, Stewart’s textbook is aligned with recommendations emphasizing that learning material, such as textbooks, should refer to collateral knowledge. This knowledge is necessary both to interpret signs and to use signs to generate knowledge, that is, to distinguish objects, structure the experiences, organize interaction, and so on (Hoffman and Roth 2007).
在这方面,斯图尔特的教材与建议一致,即学习材料(如教材)应涉及相关知识。这种知识对于解释符号和使用符号来生成知识都是必要的,即用于区分对象、构建经验、组织互动等(霍夫曼和罗斯 2007)。
The derivative concept of a function consists, however, of two different ideas. First, the definition of the derivative at a point and then the definition of the new function, f’, the derivative of the function f. These two aspects, local and global, of the definition have to be distinguished when the derivative concept is introduced.
然而,函数的导数概念包含两个不同的想法。首先是某点处导数的定义,然后是新函数 f′(函数 f 的导数)的定义。在引入导数概念时,必须区分这两个方面——局部和全局。
The author does not help students overcome the problem of seeing the difference between these aspects of the derivative concept. The two definitions, f’(a) and f’(x), are not placed side by side, in order to make the student realize that these are different characteristics of the function—the derivative of f at point (a, f(a)) and the differentiability of function f. Research by Randahl and Grevholm (2010) indicates that perhaps this is a fragility in several calculus textbooks. Thus, if on one hand we can think of the book as material for self-instruction, on the other hand we must be attentive to what the students already know when they use the book in this condition, as noted by Kilpatrick (2014).
作者没有帮助学生克服看到导数概念这些方面差异的问题。两个定义,f′(a) 和 f′(x),并没有并排放置,以便让学生意识到这些是函数的不同特征——函数 f 在点 (a, f(a)) 处的导数和函数 f 的可微性。兰达尔和格雷夫霍尔姆(2010)的研究表明,这可能是许多微积分教材的一个弱点。因此,如果一方面我们可以将这本书视为自学材料,另一方面我们必须注意学生在使用这本书时已经知道的内容,正如基尔帕特里克(2014)所指出的。
Some studies have specifically shown that visualization can help students to understand the relationship between the function and its derivative in the graphical domain, so that the visualization of the graphs of functions may help to overcome the gap that separates the abstract mathematical technique and the meanings attached to them by the learner, as noted by Radu (2008). The use of technology resources for the construction of graphical representations of functions and their derivatives can help to overcome this gap. In this way, the textbook we analyzed advises readers to use graphics calculators and computers to construct graphs of the functions, which may act as sign-vehicles. In this sense, the use of the semiotic bundle as stated by Arzarello et al. (2009) to conceptualize the derivative, in this textbook also includes the graphic representations as a sign-vehicle relative to the derivative concept as a mathematical object.
一些研究特别表明,可视化可以帮助学生理解函数及其导数在图形域中的关系,因此,函数图形的可视化可能有助于弥合抽象数学技术与学习者赋予它们的意义之间的差距,正如拉杜(2008)所指出的那样。使用技术资源来构建函数及其导数的图形表示可以帮助弥合这一差距。因此,我们分析的教材建议读者使用图形计算器和计算机来构建函数的图形,这些图形可以作为符号载体。从这个意义上说,阿扎雷洛等人(2009)所提出的用于概念化导数的符号束方法,在这本教材中也包括图形表示作为与导数概念这一数学对象相关的符号载体。
Nevertheless, a mathematical object does not exist independently of the totality of its sign-vehicles, but it is not to be confused with any particular one of them either (Otte 2001). In this way, the diversity of icon, index, and symbol as referenced in the book, as well as its embeddedness, may support the students’ meaning-making concerning the derivative concept.
然而,一个数学对象并不存在于其所有符号载体之外,但也不能与任何一个特定的符号载体混淆(奥特 2001)。因此,书中提到的图像、指示和象征的多样性及其嵌套性,可能有助于学生对导数概念的意义构建。
The analysis allows us to point out that the sign-vehicle relative to the derivative concept may be iconic, indexical, or symbolic. These signs are not mutually exclusive types of signs, but they are intertwined in such a way that we can identify iconicity in indexicality and indexicality in symbolicity.
分析使我们能够指出,与导数概念相关的符号载体可能是图像性的、指示性的或象征性的。这些符号并非相互排斥的符号类型,而是相互交织的,以至于我们可以在指示性中识别出图像性,在象征性中识别出指示性。
As Sáenz-Ludlow and Zellweger (2016) and Nöth (2008) note, signs themselves have intrinsic meanings regardless of the interpreter. Nevertheless, regarding the mathematical signs presented in the textbook, it is suitable that we consider that the distinctions in mathematical signs may be complicated by the fact that different people may categorize the “same” relationship between a sign-vehicle and its object in such a way that they are iconic, indexical, or symbolic, respectively, according to their interpretations. In practice, the distinctions are subtle because they depend on the interpretations of the learner. (Presmeg et al. 2016, p. 7).
正如萨恩斯 - 卢德洛和策尔韦格尔(2016)和诺特(2008)所指出的,符号本身具有独立于解释者的内在意义。然而,对于教材中呈现的数学符号,我们认为数学符号的区别可能由于不同的人可能会根据他们的解释,将“相同”的符号载体与其对象之间的关系分别归类为图像性、指示性或象征性,从而变得复杂。实际上,这些区别是微妙的,因为它们取决于学习者的解释。(普雷斯梅格等人 2016,第 7 页)。
Using the theoretical lens of one of Peirce’s triads in examining the presentation of the derivative concept in the textbook, we may characterize the sign-vehicles in relation to this concept. We conclude that the textbook has potential to enable students to conceptualize the derivative. In some aspects, however, the textbook may constrain the students’ conceptualization and the book could be improved to meet the students’ needs to make meaning for the derivative concept.
通过使用皮尔斯的一个三元组的理论视角来审视教材中导数概念的呈现方式,我们可以描述与这一概念相关的符号载体。我们得出结论,该教材有潜力使学生形成对导数的概念。然而,在某些方面,教材可能会限制学生对导数概念的理解,教材可以改进以满足学生对导数概念的意义构建需求。
References
-
Danckwerts, R., & Vogel, D. (2006). Analysis verständlich unterrichten [Teaching analysis in a comprehensible way]. München: Spektrum Akademischer Verlag.
-
Dörfler, W. (2005). Diagrammatic thinking. Affordances and constraints. In Hoffmann, M.H.G., Lenhard, J., Seeger, F. (Eds.) Activity and sign. Grounding Mathematics Education (pp. 57–66). New York, NY: Springer.
-
Dörfler, W. (2006). Diagramme und Mathematikunterricht [Diagrams and teaching mathematics]. Journal für Mathematik-Didaktik, 27(3–4), 200–219. https://doi.org/10.1007/BF03339039.
-
Dörfler, W. (2008). Mathematical reasoning: Mental activity or practice with diagrams. In Niss, M. (Ed.) ICME 10 Proceedings, Regular Lectures, CD-Rom (p. 17). Roskilde, Denmark: Roskilde University and IMFUFA.
-
Dörfler, W. (2016). Signs and their use: Peirce and Wittgenstein. In Bikner-Ahsbahs, A., Vohns, A., Schmitt, O., Bruder, R., Dörfler, W. (Eds.) Theories in and of Mathematics Education. Theory Strands in German Speaking Countries (ICME 13 Topical Surveys) (pp. 21–31). Berlin: Springer.
-
Duval, R. (2006). A cognitive analysis of problems of comprehension in the learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-0400-z.
-
Eisenman, P. (2008). Why is it not true that 0.999… < 1? The Teaching of Mathematics, 11(1), 35–40.
-
Ferrini-Mundy, J., & Graham, K. (1991). An overview of the calculus curriculum reform effort: Issues for learning, teaching, and curriculum development. American Mathematical Monthly, 98(7), 627–636. https://doi.org/10.1080/00029890.1991.11995769.
-
Gray, E., & Tall, D. O. (1994). Duality, ambiguity, and flexibility: A “Proceptual” view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 116–140. https://doi.org/10.2307/749505.
-
Hoffmann, M. H. G. (2005a). Erkenntnisentwicklung. Ein semiotisch-pragmatischer Ansatz [Development of knowledge A semiotic-pragmatic approach]. Frankfurt am Main: Vittorio Klostermann GmbH.
-
Hoffmann, M. H. G. (2005b). Signs as means for discovery. In Hoffmann, M.H.G., Lenhard, J., Seeger, F. (Eds.) Activity and sign. Grounding mathematics education (pp. 45–56). New York, NY: Springer.
-
Hoffmann, M. H. G. (2007). Cognitive conditions of diagrammatic reasoning (Georgia Tech’s School of Public Policy Working Paper Series 24). Retrieved from http://works.bepress.com/michael_hoffmann/1/.
-
Koch, P., & Österreicher, W. (2012). Language of immediacy – language of distance: Orality and literacy from the perspective of language theory and linguistic history. In Lange, C., Weber, B., Wolf, G. (Eds.) Communicative Spaces. Variation, Contact, and Change- Papers in Honour of Ursula Schaefer (pp. 441–473). Bern: Peter Lang.
-
Monaghan, J. (2001). Young peoples’ ideas of infinity. Educational Studies in Mathematics, 48, 239–257. https://doi.org/10.1023/A:1016090925967.
-
Müller-Hill, E., & Wille, A. M. (2018). Negotiating mathematical meaning with oneself - snapshots from imaginary dialogues on recurring decimals. In Norén, E., Palmér, H., Cooke, A. (Eds.) Skrifter från Svensk Förening för MatematikDidaktisk Forskning, No. 12, Nordic Research in Mathematics Education (pp. 69–77). Göteborg, Sweden: SMDF.
-
Orton, A. A. (1983). Students’ understanding of differentiation. Educational Studies in Mathematics, 14(3), 235–250. https://doi.org/10.1007/BF00410540.
-
Otte, M. F. (2011). Evolution, learning, and semiotics from a Percean point of view. Educational Studies in Mathematics, 77, 313–329. https://doi.org/10.1007/s10649-011-9302-9.
-
Park, J. (2015). Is the derivative a function? If so, how do we teach it? Educational Studies in Mathematics, 89, 233–250. https://doi.org/10.1007/s10649-015-9601-7.
-
Peirce, (NEM). (1976). The New Elements of Mathematics by Charles S. Peirce. In Eisele, C. (Ed.), Vol. I-809 IV. The Hague-Paris/Atlantic Highlands, N.J.: Mouton/Humanities Press.
-
Rasmussen, C., Marrongelle, K., Borba, M. C. (2014). Research on calculus: what do we know and where do we need to go?. ZDM Mathematics Education, 46, 507–515. https://doi.org/10.1007/s11858-014-0615-x.
-
Staats, S. K. (2008). Poetic lines in mathematics discourse: A method from linguistic anthropology. For the Learning of Mathematics, 28(2), 26–32.
-
Tall, D. O, & Schwarzenberger, L. E. (1978). Conflicts in the learning of real numbers and limits. Mathematics Teaching, 82, 44–49.
-
Thompson, P. W. (1994a). Images of rate and operational understanding of the Fundamental Theorem of Calculus. Educational Studies in Mathematics, 26(2–3), 229–274. https://doi.org/10.1007/BF01273664.
-
Thompson, P. W. (1994b). Students, functions, and the undergraduate curriculum. In Dubinsky, E., Schoenfeld, A.H., Kaput, J.J. (Eds.) Research in collegiate mathematics education, 1, Issues in Mathematics Education, (Vol. 4 pp. 21–44). Providence, RI: American Mathematical Society.
-
Vygotsky, L. S. (1986). Thought and language (A. Kozulin, Trans. and Ed.) Cambridge: M.I.T. Press.
-
Weigand, H.-G. (2014). A discrete approach to the concept of derivative. ZDM Mathematics Education, 46, 603–619. https://doi.org/10.1007/s11858-014-0595-x.
-
Wille, A. M. (2008). Aspects of the concept of a variable in imaginary dialogues written by students. In Figueras, O., Cortina, J., Alatorre, S., Rojano, T., Sepúlveda, A. (Eds.) Proceedings of the 32nd Conference of the International Group for the Psychology of Mathematics Education (PME32), (Vol. 4 pp. 417–424). Mexico: CINVESTAV and PME.
-
Wille, A. M. (2017a). Imaginary Dialogues in Mathematics Education. Journal für Mathematik-Didaktik, 38(1), 29–55. https://doi.org/10.1007/s13138-016-0111-7.
-
Wille, A. M. (2017b). Conceptions of the transition from the difference quotient to the derivative in imaginary dialogues written by preservice teachers. In Dooley, T., & Gueudet, G. (Eds.) Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME10, February 1 – 5, 2017, pp. 1396–1403). Dublin, Ireland: DCU Institute of Education and ERME.
-
Wittgenstein, L. (1999). (PI). Philosophical investigations (second edition) (G. E. M. Anscombe, Trans.) Oxford/Malden: Blackwell Publishers Ltd.
-
Wittgenstein, L. (1967). (RFM). Remarks on the foundation of mathematics. (G. H. Wright, R. Rhees, G. E. M. Anscombe, Eds.) (G. E. M. Anscombe, Trans.) Cambridge: M.I.T. Press.
-
Wittgenstein, L. (1979). Wittgenstein and the Vienna Circle: Conversations recorded by F. Waismann. In MacGuiness, B. (Ed.) New York: Barnes & Noble.
-
Wrigley, M. (1977). Wittgenstein’s philosophy of mathematics. The Philosophical Quarterly (1950–), 27(106), 50–59. https://doi.org/10.2307/2218928.
-
Zandieh, M. J. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. CBMS Issues in Mathematics Education, 8, 103–127.
-
Zazkis, R., Liljedahl, P., Sinclair, N. (2013). Lesson play in mathematics education. A tool for research and professional development. New York, NY: Springer.
Funding
Open access funding provided by University of Klagenfurt.
Author information
Authors and Affiliations
-
Institut für Didaktik der Mathematik, Universität Klagenfurt, Sterneckstraße 15, 9010, Klagenfurt, Austria
Annika M. Wille
Corresponding author
Correspondence to Annika M. Wille.
Activity with Signs and Speaking About It: Exploring Students’ Mathematical Lines of Thought Regarding the Derivative
符号活动与讨论:探索学生对导数的数学思维路径
Received: 28 March 2019 / Accepted: 21 September 2019 © The Author (s) 2019
Abstract
In order to participate proficiently in mathematical activity, a student needs to become fluent in both mathematical sign activity and speaking about the activity with signs. From the theoretical viewpoint of the philosophers Wittgenstein and Peirce, on the one hand, mathematics is seen as a sign game, while on the other hand experiments with signs allow for observable, communicable and describable reasoning. In this article, the focus is on the student’s sign activity and his or her speaking about it and the question of how they are intertwined. To that end, a method is presented to display the interplay of student’s activity with signs and speaking about it, and in particular, to reconstruct the student’s line of argumentation. This is applied to a case study where imaginary dialogues written by a class of grade 11 students on the topic “derivative” were analyzed.
摘要 为了熟练参与数学活动,学生需要在数学符号活动以及对符号活动的讨论中变得熟练。从哲学家维特根斯坦和皮尔斯的理论视角来看,一方面,数学被视为一种符号游戏,而另一方面,符号实验允许进行可观察、可交流和可描述的推理。在本文中,重点是学生的符号活动以及他对符号活动的讨论,以及它们是如何相互交织的。为此,本文提出了一种方法,用于展示学生符号活动与讨论之间的相互作用,特别是重建学生的论证路径。这种方法被应用于一个案例研究,其中分析了 11 年级学生撰写的关于 “导数” 主题的虚构对话。
Keywords
Calculus・Language and mathematics・Peirce・Semiotics・Wittgenstein
关键词 微积分・语言与数学・皮尔斯・符号学・维特根斯坦
Introduction
引言
Sign activity and speaking about sign activity are both part of mathematical activity. They are intertwined in various ways. It is precisely this linkage that is the focus of this article by means of examples of students’ explanations and reasoning regarding the derivative. In the literature, the role of mathematical signs, such as symbols, terms, equations and graphs, often is described as a means for mathematical activity, for example to serve as representations for abstract mathematical objects (e.g. Duval, 2006). In this article, mathematical signs will be considered from the perspective of Wittgenstein and Peirce (cf. Dörfler, 2016), where sign activity is seen as a central and inevitable part of mathematical activity. Furthermore, the meaning of these signs arises from the use of the signs, thus, largely from activity with the signs. Therefore, these signs are not only a means but are objects of mathematical activity as well. Additionally, speaking about sign activity is also inevitable within mathematical reasoning. The ways in which mathematical activity, sign activity and speaking about sign activity intertwine will be elaborated upon below. From this perspective, in order to participate more and fully in mathematical social practice, a learner needs to become fluent in mathematical sign activity and in addition this sign activity needs to be linked to speaking about the sign activity. Neither one nor the other can be dispensed with. In complex subjects, as with the topic of “derivative”, sign activity and speaking about it are linked to each other in various ways. Therefore, how a student uses mathematical signs in an explanation on this topic is particularly interesting. In some countries, calculus is only taught at college or university. In other countries, like Austria, it is already part of the school curriculum in grades 11 and 12. Students exhibit various difficulties in learning calculus (e.g. Ferrini-Mundy & Graham 1991; Orton, 1983; Rasmussen et al. 2014). In particular, studies mention that one difficulty in understanding the derivative is that various other terms need to have been learned beforehand, such as “function”, “limit”, and “difference quotient” (e.g. Park 2015; Thompson 1994a; Weigand 2014; Wille 2017b; Zandieh 2000). This article is divided into two parts: In the first part Wittgenstein’s view of mathematics is presented and referenced to Peirce’s theory of signs with an emphasis on connections between mathematical sign activity and speaking about this activity. Afterwards, these considerations are related to the subject area of “derivative”, which leads to specific research questions regarding:
符号活动和对符号活动的讨论都是数学活动的一部分。它们以各种方式相互交织。本文正是通过学生对导数的解释和推理的例子,来探讨这种联系。在文献中,数学符号(如符号、术语、方程和图形)的作用通常被描述为数学活动的一种手段,例如作为抽象数学对象的表示(例如 Duval, 2006)。在本文中,将从维特根斯坦和皮尔斯的视角来考虑数学符号(参见 Dörfler, 2016),符号活动被视为数学活动的核心和不可避免的部分。此外,这些符号的意义来自符号的使用,因此,主要来自与符号的活动。因此,这些符号不仅是手段,也是数学活动的对象。此外,在数学推理中,对符号活动的讨论也是不可避免的。下面将详细阐述数学活动、符号活动以及对符号活动的讨论是如何相互交织的。从这个角度来看,为了更充分地参与数学社会实践,学习者需要在数学符号活动方面变得熟练,并且这种符号活动需要与对符号活动的讨论联系起来。两者缺一不可。在复杂的主题中,如 “导数” 这一主题,符号活动和对符号活动的讨论以各种方式相互联系。因此,学生在解释这一主题时如何使用数学符号特别有趣。在一些国家,微积分只在大学或学院中教授。在其他国家,如奥地利,它已经是 11 年级和 12 年级学校课程的一部分。学生在学习微积分时表现出各种困难(例如 Ferrini-Mundy & Graham 1991; Orton, 1983; Rasmussen et al. 2014)。特别是,研究表明,理解导数的一个困难是需要事先学习各种其他术语,如 “函数”、“极限” 和 “差商”(例如 Park 2015; Thompson 1994a; Weigand 2014; Wille 2017b; Zandieh 2000)。本文分为两部分:在第一部分中,介绍了维特根斯坦对数学的看法,并引用了皮尔斯的符号理论,重点是数学符号活动与对这种活动的讨论之间的联系。之后,这些考虑与 “导数” 这一学科领域相关,这导致了关于以下内容的具体研究问题:
-
The connections a student establishes between mathematical signs, between verbal terms, or between signs and terms (see RQ 1).
学生在数学符号之间、口头术语之间或符号与术语之间建立的联系(见研究问题 1)。 -
The process of establishing these connections in an explanation (see RQ 2).
在解释中建立这些联系的过程(见研究问题 2)。
The second part presents an analysis method together with a study which was carried out in a grade 11 school class and takes up the research questions stated at the end of the theoretical part. The analysis of each student’s mathematical communication is presented in a visualization that maps the student’s mathematical lines of thought that are displayed in their communication. In particular, there is a focus on how a student intertwines sign activity and speaking about the activity. In that way, differences between the high-, average- and low-achieving students in this class can be determined and learning difficulties can be explained.
第二部分介绍了一种分析方法,并在 11 年级的一个班级中进行了研究,研究了理论部分末尾提出的研究问题。通过可视化的方式呈现了每个学生的数学交流分析,该可视化映射了学生在交流中展示的数学思维路径。特别是,关注学生如何将符号活动和对符号活动的讨论交织在一起。通过这种方式,可以确定该班级中高、中、低成绩学生之间的差异,并解释学习困难。
Theoretical Framework
理论框架
Mathematics in the Light of Wittgenstein and Peirce
维特根斯坦和皮尔斯视角下的数学
Wittgenstein: Mathematics as a Sign Game
维特根斯坦:数学作为一种符号游戏
In the view of the Austrian philosopher Ludwig Wittgenstein (1889–1951) mathematics is a kind of sign game or language game where the meaning of a mathematical sign, symbol, word or proposition arises from its use within the game (cf. Wittgenstein, PI, RFM, WWK). He compares mathematics in this regard with the game of chess, where, for example, a certain figure does not have a meaning outside the game, but where the meaning is obtained by the rules that hold for the figure, for example, how to move it (cf. Wrigley, 1977, p. 53). Thus, as a chess figure can be moved according to the game rules, signs in mathematics can be operated with or derived of others due to the rules in mathematics (cf. WWK, pp. 103–105). Nevertheless, Wittgenstein does not see mathematics purely as a game. In contrast to a pure game, Wittgenstein emphasizes that mathematics obtains its legitimation from the “use outside mathematics” (cf. RFM, p. 133e). Nevertheless, “the meaning of the signs, symbols, and diagrams does not come from the outside of mathematics but is created by a great variety of activities with the signs within mathematics” (Dörfler, 2016, p. 27). From this viewpoint, understanding and learning mathematics means to progressively learn the rules of the game and how they are connected, hence, how rules can be derived of others. As a chess player needs to practice the game in order to become fluent in playing and to understand the game, a mathematics learner needs to act with signs in order to understand mathematics.
在奥地利哲学家路德维希・维特根斯坦(1889–1951)的观点中,数学是一种符号游戏或语言游戏,其中数学符号、符号、词语或命题的意义来自于其在游戏中的使用(参见维特根斯坦,PI,RFM,WWK)。他将数学与国际象棋游戏相提并论,在国际象棋中,例如,某个棋子在游戏之外没有意义,但其意义来自于适用于该棋子的规则,例如,如何移动它(参见 Wrigley, 1977, 第 53 页)。因此,正如棋子可以根据游戏规则移动一样,数学中的符号可以根据数学规则进行操作或从其他符号推导出来(参见 WWK,第 103–105 页)。然而,维特根斯坦并不将数学纯粹视为一种游戏。与纯粹游戏不同,维特根斯坦强调数学从 “数学之外的使用” 中获得其合法性(参见 RFM,第 133e 页)。然而,“符号、符号和图表的意义并非来自数学之外,而是由数学内部的各种符号活动创造的”(Dörfler, 2016, 第 27 页)。从这个观点来看,理解和学习数学意味着逐步学习游戏规则以及它们之间的联系,即如何从其他规则中推导出规则。正如棋手需要练习游戏以熟练掌握并理解游戏一样,数学学习者需要通过符号活动来理解数学。
Peirce’s Diagrams as Objects and Means of Mathematical Thinking
皮尔斯的图表:数学思维的对象和手段
The theory of signs of the American mathematician, logician, and philosopher Charles Sanders Peirce (1839–1914) and in particular his notions of diagram and diagrammatic reasoning can be used to characterize the activity with signs in mathematics more precisely. However, it is neither the aim of this article, nor can it be done in a few pages, to extensively describe Peirce’s theory. Elaborations in greater detail can be found, for example, in Hoffmann (2005a, b, 2007); Dörfler (2005, 2006, 2016), and Otte (2011). It is important to note that the term diagram used by Peirce differs from the common understanding of the notion of a diagram in mathematics and mathematics education. A diagram, in Peirce’s sense, does not have a mandatory geometric connotation. Examples of diagrams in mathematics are algebraic terms or equations, function graphs, and also geometric figures or Hasse diagrams of lattices that are usually termed diagrams in the mathematical language. But, it should also be mentioned that not every visualization that is used in mathematics or mathematics education is a diagram in Peirce’s sense. Diagrams are based on inscriptions, for example on paper, and have several characteristics that qualify them as a diagram (cf. Dörfler, 2016, pp. 25–26). One of them is that they belong to a system of representations that specifies how to construct diagrams and how to experiment with them. In the following, this type of activity with diagrams given by a system of representations is referred to as diagrammatic activity. Furthermore, diagrams are complex signs: indices can direct the attention to something, they form a subset of icons and represent relations because of conventions. Therefore, a diagram also has a symbolic character (cp. Hoffmann, 2005b, p. 46). In particular, a diagram is not a diagram by itself. But a sign can be interpreted as diagram, if an individual knows a system of representations through which it can be constructed and above all that offers possibilities of operations on this diagram, whereby operations are understood in a broad sense. For example, a mathematical term can be interpreted as a diagram if an individual knows the conventionalized rules about how to construct it and how to experiment with it. But for a different individual, who does not know a corresponding representational system, that same term may appear to be just an artistic pattern. In this way, a verbal term can also be a mathematical diagram if there are such possibilities of operations. For Peirce, mathematical reasoning is diagrammatic reasoning that consists of constructing, experimenting, observing, noting, and assuring (cf. Peirce, NEM IV: pp. 47–48; Hoffmann, 2007, p. 3). Thus, diagrams are not only the means of the generation of knowledge, but also objects. Hoffmann (2007) describes “mathematical reasoning as a process in which an individual (or a group of individuals) constructs an external representation, and experiments with this representation playfully and creatively, in order to clarify, structure, and coordinate thinking processes” (ibid., p. 21). Thus, the experiments with diagrams are not only algorithmic manipulations, but involve creativity as a part of a process to coordinate thinking processes. This fits well with Wittgenstein’s view that the meaning of a mathematical sign arises from its use within the sign game. The rules on how to experiment with diagrams given by a system of representations can be seen as a part of the sign game rules. And as one can see how a chess figure is moved, the activity on diagrammatic inscriptions can be perceived with physical senses. As a consequence, this enables communication about the activity with signs. The role of communication, in particular, to speak about the activity with diagrams, will be elaborated below.
美国数学家、逻辑学家和哲学家查尔斯・桑德斯・皮尔斯(1839–1914)的符号理论,特别是他对图表和图表推理的概念,可以用来更精确地描述数学中的符号活动。然而,本文的目的并非在几页纸内详细描述皮尔斯的理论。更详细的阐述可以在 Hoffmann(2005a, b, 2007)、Dörfler(2005, 2006, 2016)和 Otte(2011)中找到。需要注意的是,皮尔斯所使用的 “图表” 一词与数学和数学教育中常见的图表概念不同。在皮尔斯的意义上,图表没有强制性的几何含义。数学中的图表例子包括代数项或方程、函数图形,以及通常在数学语言中被称为图表的几何图形或格子的哈斯图表。但也要指出,并非数学或数学教育中使用的所有可视化都是皮尔斯意义上的图表。图表基于纸张上的书写,并具有使其成为图表的几个特征(参见 Dörfler, 2016, 第 25–26 页)。其中之一是它们属于一个表示系统,该系统规定了如何构建图表以及如何对它们进行实验。在下文中,这种由表示系统给出的图表活动被称为图表活动。此外,图表是复杂的符号:索引可以将注意力引向某物,它们是图标的子集,并且由于约定而代表关系。因此,图表也具有符号特征(参见 Hoffmann, 2005b, 第 46 页)。特别是,图表本身并不是图表。但如果一个人知道一个可以通过其构建图表的表示系统,尤其是提供对图表进行操作的可能性,那么一个符号可以被解释为图表,这里操作是从广义上理解的。例如,如果一个人知道如何构建数学项以及如何对其进行实验的约定规则,那么数学项可以被解释为图表。但对于一个不知道相应表示系统的不同个体来说,同一个项可能看起来只是一个艺术图案。通过这种方式,如果存在这样的操作可能性,口头术语也可以是数学图表。对于皮尔斯来说,数学推理是图表推理,包括构建、实验、观察、记录和确认(参见 Peirce, NEM IV: 第 47–48 页;Hoffmann, 2007, 第 3 页)。因此,图表不仅是知识生成的手段,也是对象。Hoffmann(2007)描述 “数学推理是一个过程,在这个过程中,个人(或一组人)构建一个外部表示,并以一种富有创造力和创造性的方式对这个表示进行实验,以便澄清、结构化和协调思维过程”(同上,第 21 页)。因此,对图表的实验不仅仅是算法操作,而是涉及创造力,作为协调思维过程的一部分。这与维特根斯坦的观点非常契合,即数学符号的意义来自于其在符号游戏中的使用。由表示系统给出的关于如何对图表进行实验的规则可以被视为符号游戏规则的一部分。正如人们可以看到棋子如何移动一样,图表上的活动可以通过感官感知。因此,这使得关于符号活动的交流成为可能。特别是关于图表活动的讨论的作用将在下面详细阐述。
Diagrammatical Activity and Speaking About It
图表活动与对其的讨论
In the theoretical view outlined above, diagrammatical activity is seen as an inevitable part of mathematical activity. Furthermore, to speak about this activity is in the same way indispensable in mathematics. In the following, the connections between and intertwining of these two activities are outlined.
在上述理论观点中,图表活动被视为数学活动的必然部分。此外,对这种活动的讨论在数学中同样不可或缺。下面将概述这两种活动之间的联系及其相互交织。
Denotations
术语
The first connection regards denotations for different diagrams, in particular, diagrams that belong to different representational systems. In mathematics, often the same denotation is used if one sees a kind of correspondence between the representational systems along with their diagrams. For example, the word “function” is used as a denotation for different diagrams, that is, for a function term as well as for a function graph. Thus it is possible to speak about the properties of these denotations as for example: “If a function is differentiable at a point, it is continuous at this point.” Instead of seeing a term and a graph as different representations of an abstract mathematical object “function”, from the diagrammatical point of view, one starts with systems of representations and their diagrams and if there is a kind of correspondence a denotation emerges.1 Even if there is a correspondence between diagrams of different representational systems, it is still possible that different representational systems allow different diagrammatic activities of an individual. Since a diagram represents relations, different relations can be the focus of the observer for diagrams in different systems of representations. This can lead to different experiments with the diagrams in order to solve a problem. Still, it can be helpful to use the same denotation for diagrams of different representational systems, since that way one can talk about properties of the “entities”. In particular, the words for properties allow for connections to be made between verbal terms and diagrammatic activity. However, it could be problematic if a learner, who is not fluent enough in diagrammatic activity, learns a mathematical term mainly by speaking about diagrams but with only little diagram use, and who therefore connects the denotation insufficiently with the corresponding diagrams and how they are operated with. In the study presented in this article, examples will be shown where students use language detached from diagrammatic activity. This provides an explanation for the learning difficulties observed (cf. e.g. the case of Peter below).
第一个联系是关于不同图表的术语,特别是属于不同表示系统的图表。在数学中,如果人们看到不同表示系统及其图表之间存在某种对应关系,通常会使用相同的术语。例如,“函数” 一词被用作不同图表的术语,即函数项和函数图形。因此,可以讨论这些术语的性质,例如:“如果一个函数在某点可导,则它在该点连续。” 与将一个项和一个图形视为抽象数学对象 “函数” 的不同表示不同,从图表的角度来看,人们从表示系统及其图表开始,如果存在某种对应关系,就会出现一个术语。1 即使在不同表示系统的图表之间存在对应关系,不同的表示系统仍然可能允许个人进行不同的图表活动。由于图表代表关系,不同的关系可以成为观察者在不同表示系统中图表的重点。这可能导致对图表进行不同的实验以解决问题。然而,使用相同的术语来指代不同表示系统的图表仍然是有益的,因为这样可以讨论 “实体” 的性质。特别是,描述性质的词语允许在口头术语和图表活动之间建立联系。然而,如果一个学习者在图表活动方面不够熟练,主要通过讨论图表而不是使用图表来学习数学术语,因此将术语与相应的图表及其操作方式联系得不够紧密,这可能会成为一个问题。在本文介绍的研究中,将展示学生将语言与图表活动分离使用的例子。这为观察到的学习困难提供了解释(参见下面的彼得案例)。
Interpretations of Diagrammatic Reasoning
图表推理的解释
A second connection between diagrammatic activity and speaking about it is outlined in Dörfler (2005) regarding interpretations of diagrammatic reasoning. As described above, language can be used to talk about “the results of (observing) the diagrammatic operations and deduce on the conceptual level new properties of the latter” (Dörfler 2005, p. 59). Dörfler calls this an “economic substitute” (ibid., p. 59), which is the case if the complexity of diagrammatic inscriptions and the experiments with them causes the use of verbal terms. Furthermore, Dörfler describes different reasons, where limitations of diagrammatic reasoning can cause the use of speaking about diagrams. One limitation has to do with reasoning about infinity or rather reasoning about all diagrams of a certain class. One example concerns natural numbers. The inscription n can be considered as a diagram constructed by the system of representation that contains the Peano axioms as rules. Thus, n can be called a natural number as a denotation of this diagram. Furthermore, by these axioms (which can be regarded as rules in the sign game according to Wittgenstein) it follows that a diagrammatic inscription n + 1 can be constructed. Until now the reasoning is diagrammatic. But, to conclude that there are infinitely many natural numbers, is, according to Dörfler, an interpretation of diagrammatic reasoning. “N has no diagram”, as Dörfler states (ibid., p. 62). Analogous considerations can be made for the existence of infinitely many prime numbers or the set of all real numbers. Interestingly, in this case, there is not only a move from diagrammatic reasoning to speaking about diagrammatic activity, but also the other way around. Because of the interpretation “there are infinitely many natural numbers”, one invents the sign N
图表活动与对其讨论之间的第二个联系是 Dörfler(2005)所描述的图表推理的解释。如上所述,语言可以用来讨论 “图表操作的结果(观察图表操作的结果)并在概念层面上推导出其新的性质”(Dörfler 2005, 第 59 页)。Dörfler 称此为 “经济替代品”(同上,第 59 页),当图表书写和对它们的实验的复杂性导致使用口头术语时,就会出现这种情况。此外,Dörfler 描述了图表推理的局限性可能导致对图表进行讨论的不同原因。其中一个局限性与无限性的推理有关,或者更准确地说,与对某一类所有图表的推理有关。一个例子涉及自然数。符号 n 可以被视为由包含皮亚诺公理作为规则的表示系统构建的图表。因此,n 可以被称为这个图表的术语,即自然数。此外,根据这些公理(根据维特根斯坦的观点,这些公理可以被视为符号游戏中的规则),可以推导出图表符号 n + 1 的构建。到目前为止,推理是图表性的。然而,根据 Dörfler 的说法,得出存在无限多自然数的结论是对图表推理的解释。“N 没有图表”,正如 Dörfler 所指出的(同上,第 62 页)。类似地,对于无限多质数的存在或所有实数的集合,也可以进行类似的考虑。有趣的是,在这种情况下,不仅有从图表推理到对图表活动的讨论的转变,还有相反的转变。由于 “存在无限多自然数” 的解释,人们创造了符号 N
and likewise Q or R or C for all rational, real or complex numbers. Therefore, in the diagrammatic “world” one can continue to operate with these signs and experiment with them, as for example when using the phrase “for all ε > 0 with ε ∈ R”. Here, one can see how diagrammatic sign activity and speaking about it intertwine in mathematics: Language is not only used to verbalize experiences with diagrams, but also to interpret diagrammatic reasoning with a return to the “world of mathematical diagrams”. Thus, interpretations of diagrammatic reasoning can lead to a diagrammatization as a backflow from “speaking about” to diagrammatic activity. This has consequences for the learning process. Diagrammatic activity can be observed directly, but interpretations are not likewise accessible to our senses as experiments on diagrams. That might be a reason why students have problems in cases when not only diagrammatic reasoning but also interpretations and their reflow as diagrams is the focus. That is in accordance with what a university student of mine, a preservice teacher, wrote in a text: “Intuitive understanding is not a fan of infinity” (translated by the author).2 An example is the equation 0.9 = 1. Problems with this equation are reported in various articles (e.g. Eisenman, 2008; Monaghan, 2001; Tall & Schwarzenberger, 1978). Furthermore, in Müller-Hill and Wille (2018) it was shown, that there are students who prove the equation but nevertheless state that 0.9 is less than 1. To conclude the equality the definition of limit is necessary, where the phrase “for all ε > 0” is central.3 Now, “for all” can only be understood when there is a set of all real numbers which is an interpretation of diagrammatic reasoning. Thus, an individual needs to accept the interpretation and not only (which is difficult enough) the rules of how to act with diagrams and their implications, in order to participate in the mathematical “game”. Likewise below, in the findings of the study presented here, problems arise in cases where students try to explain what the limit is (cf. e.g. the case of Katharina and Maria below). In the following, the focus turns to the diagrammatical sign activity and speaking about it regarding the derivative.
同样地,Q 或 R 或 C 分别用于表示所有有理数、实数或复数。因此,在图表的 “世界” 中,人们可以继续使用这些符号进行操作并进行实验,例如使用短语 “对于所有 ε > 0,ε ∈ R”。在这里,我们可以看到数学中图表符号活动与对其讨论是如何相互交织的:语言不仅用于表达与图表的经验,还用于解释图表推理,并返回到 “数学图表的世界”。因此,图表推理的解释可能导致从 “讨论” 到图表活动的反向流动,即图表化。这对学习过程产生了影响。图表活动可以直接观察到,但解释并不能像图表实验那样被我们的感官感知。这可能是学生在不仅需要图表推理,还需要解释及其作为图表的反向流动时出现问题的原因。这与我的一位大学预科教师学生在一篇文章中所写的内容一致:“直观理解不喜欢无穷大”(作者翻译)。2 一个例子是方程 0.9 = 1。关于这个方程的问题在各种文章中都有报道(例如 Eisenman, 2008; Monaghan, 2001; Tall & Schwarzenberger, 1978)。此外,在 Müller-Hill 和 Wille(2018)的研究中表明,有些学生证明了这个方程,但仍然声称 0.9 小于 1。要得出等式结论,就需要极限的定义,其中 “对于所有 ε > 0” 这一短语是核心。3 现在,“对于所有” 只有在存在所有实数的集合时才能被理解,而这是图表推理的一种解释。因此,个人需要接受这种解释,而不仅仅是(这已经足够困难了)如何操作图表及其含义的规则,才能参与数学 “游戏”。同样,在下面介绍的研究结果中,在学生试图解释什么是极限的情况下也出现了问题(参见下面的 Katharina 和 Maria 案例)。接下来,我们将关注与导数相关的图表符号活动及其讨论。
Diagrammatical Sign Activity and Speaking About It Regarding the Derivative
关于导数的图表符号活动及其讨论
Connecting Terms and Diagrams
连接术语与图表
On the level of speaking about diagrammatic sign activity, verbal terms can be connected in the use of language. These terms can be denotations or interpretations of diagrammatic reasoning. Regarding the topic of “derivative”, these verbal terms are not mathematical diagrams themselves, since there are no operations on them given by a representational system. One can only speak about operations on diagrams for which these verbal terms are denotations. Furthermore, a verbal term can arise from applications of diagrams where diagrams are used as models in outer-mathematical contexts. Figure 1 (cf. similar tables in Wille (2017b, p. 1397) and in Danckwerts and Vogel (2006, p. 57 & p. 85)) shows various verbal terms that are used regarding the topic “derivative”. They are differentiated in algebraic-analytical, geometric-graphical, and application-based terms. In what follows, I distinguish horizontal and vertical connections according to this table.
在讨论图表符号活动的层面上,可以在语言使用中连接口头术语。这些术语可以是图表推理的术语或解释。关于 “导数” 这一主题,这些口头术语本身并不是数学图表,因为表示系统没有提供对它们的操作。人们只能讨论这些口头术语所代表的图表的操作。此外,口头术语也可以从图表的应用中产生,在这些应用中,图表作为模型用于数学之外的上下文中。图 1(参见 Wille(2017b,第 1397 页)和 Danckwerts 和 Vogel(2006,第 57 页和第 85 页)中的类似表格)展示了关于 “导数” 主题的各种口头术语。这些术语分为代数分析型、几何图形型和应用型。接下来,我将根据这个表格区分水平和垂直连接。
Algebraic - Analytical 代数 - 分析角度 | Function or Value of a Function 函数或函数值 | Difference of Function Values 函数值之差 | Difference Quotient 差商 | Limit 极限 | Differential Quotient or Derivative 微分商或导数 |
---|---|---|---|---|---|
Geometric - Graphical 几何 - 图形角度 | Graph or Point on a Graph 图像或图像上的点 | Difference of the Value y of Points 点的y值之差 | Secant Slope 割线斜率 | Geometric Description of an Approach of Two Points 两点趋近的几何描述 | Tangent Slope 切线斜率 |
Application - Based 应用角度 | According to the Specific Application, e.g., Distance at a Point of Time 根据具体应用,例如某一时刻的距离 | According to the Specific Application, e.g., Absolute Difference of Distances 根据具体应用,例如距离的绝对差值 | Rate of Change or Relative Change, e.g., Average Speed 变化率或相对变化,例如平均速度 | According to the Specific Application, e.g., Description of an Approach of Two Points of Time 根据具体应用,例如两个时间点趋近的描述 | Local Rate of Change or Momentary Rate of Change, e.g., Momentary Speed 局部变化率或瞬时变化率,例如瞬时速度 |
Fig. 1 Use of verbal terms regarding the topic “derivative”
图 1 关于“导数”主题的术语使用
On the level of diagrammatic activity, the correspondence between function terms and function graphs is central in school mathematics,4 where these diagrams belong to different representational systems. In what follows, the representational system to which diagrams like function terms belong will be termed algebraic-analytical and the representational system to which diagrams like function graphs belong will be termed geometric-graphical. Furthermore, the terms horizontal and vertical, which refer to the table in Fig. 1, are transferred to diagrams: A vertical connection represents a correspondence of two diagrams in different representational systems, here, between the algebraic-analytical and the geometric-graphical representational system. A horizontal connection corresponds to a diagrammatic line of reasoning within one representational system, possibly using diagrammatizations of interpretations. In the algebraic-analytical system of representations the (horizontal) diagrammatic line of reasoning to derive the differential quotient uses diagrams of the form:
在图表活动的层面上,函数项与函数图形之间的对应关系在中学数学中是核心内容,4 这些图表属于不同的表示系统。接下来,将像函数项这样的图表所属的表示系统称为代数分析型,而像函数图形这样的图表所属的表示系统称为几何图形型。此外,图 1 中的水平和垂直这两个术语也被应用于图表:垂直连接表示不同表示系统中的两个图表之间的对应关系,即代数分析型和几何图形型表示系统之间的对应关系。水平连接对应于一个表示系统内的图表推理路径,可能使用解释的图表化。在代数分析型表示系统中,用于推导差商的(水平)图表推理路径使用以下形式的图表:
f ( x ) , f ( x ) − f ( y ) x − y , f ( x + h ) − f ( x ) h f (x), \frac {f (x) - f (y)}{x - y}, \frac {f (x + h) - f (x)}{h} f(x),x−yf(x)−f(y),hf(x+h)−f(x)
and
f ′ ( x ) = lim h → 0 f ( x + h ) − f ( x ) h f'(x) = \lim_{h \to 0} \frac {f (x + h) - f (x)}{h} f′(x)=h→0limhf(x+h)−f(x)
Of course, instead of these diagrams, it is possible to write other diagrams due to manipulation rules of the representational system, like, for example, lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x \to x_0} \frac {f (x) - f (x_0)}{x - x_0} limx→x0x−x0f(x)−f(x0) instead of lim h → 0 f ( x + h ) − f ( x ) h \lim_{h \to 0} \frac {f (x + h) - f (x)}{h} limh→0hf(x+h)−f(x) or using g ( t ) g (t) g(t) instead of f ( x ) f (x) f(x).
当然,由于表示系统的操作规则,可以写出其他图表,例如,可以用 lim x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x \to x_0} \frac {f (x) - f (x_0)}{x - x_0} limx→x0x−x0f(x)−f(x0) 代替 lim h → 0 f ( x + h ) − f ( x ) h \lim_{h \to 0} \frac {f (x + h) - f (x)}{h} limh→0hf(x+h)−f(x),或者用 g ( t ) g (t) g(t) 代替 f ( x ) f (x) f(x)。
As argued before the step from
f
(
x
+
h
)
−
f
(
x
)
h
\frac {f (x + h) - f (x)}{h}
hf(x+h)−f(x) to
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
\lim_{h \to 0} \frac {f (x + h) - f (x)}{h}
limh→0hf(x+h)−f(x) requires a reflow from speaking about diagrams, because of the phrase “for all ε > 0 with ε ∈ R” in the definition of the limit. Hence, a precondition of following this step is to accept the interpretation that there is an infinite set of real numbers. Due to the geometric-graphical system of representations, secants and tangents can be constructed and one can reason about their slope, for example understood as the angle of the gradient triangle. Here, a horizontal connection uses diagrams like graphs, secant lines and their slopes and tangent lines together with their slopes.
正如前面所论证的,从
f
(
x
+
h
)
−
f
(
x
)
h
\frac {f (x + h) - f (x)}{h}
hf(x+h)−f(x) 到
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
\lim_{h \to 0} \frac {f (x + h) - f (x)}{h}
limh→0hf(x+h)−f(x) 的步骤需要从对图表的讨论中进行反向流动,因为极限定义中的 “对于所有 ε > 0,ε ∈ R” 这一短语。因此,接受存在一个无限的实数集这一解释是完成这一步的前提条件。由于几何图形型表示系统,可以构建割线和切线,并可以推理它们的斜率,例如理解为梯度三角形的角度。在这里,水平连接使用了图形、割线及其斜率以及切线及其斜率等图表。
Research Questions Concerning the Connections Between Diagrammatic Activity and Speaking About It
关于图表活动与对其讨论之间联系的研究问题
As discussed, an individual can establish diagrammatically horizontal and vertical connections regarding the derivative and communicate about it. With the perspective of seeing diagrammatic reasoning as a central and inevitable part of mathematical activity, the question arises of how when speaking about connections of mathematical verbal terms, a learner links his or her discourse to diagrams and diagrammatic activity. Clearly, someone who is experienced in diagrammatic activity regarding the derivative, thus, who links horizontally and vertically diagrams according to one or several representational systems, may use denotations to speak about these experiences. However, if a learner speaks about mathematical verbal terms as if they were entities, what the learner says will not necessarily be based on their experience with diagrams. Instead, the learner could have memorized the “speaking about” detached from diagrammatic activity. One can imagine, for example, that a student could not follow the diagrammatic activity that was presented and discussed in class, and that he or she therefore learned non-diagrammatic phrases by heart. Taking these considerations into account, the above question can be specified as follows as the first research question for the study presented here:
正如所讨论的,个人可以建立关于导数的图表水平和垂直连接,并对其进行交流。从将图表推理视为数学活动的核心和必然部分的角度来看,出现了这样一个问题:当讨论数学口头术语之间的联系时,学习者如何将其话语与图表和图表活动联系起来。显然,一个在导数的图表活动方面有经验的人,即根据一个或多个表示系统水平和垂直地连接图表的人,可能会使用术语来讨论这些经验。然而,如果一个学习者将数学口头术语当作实体来讨论,那么他或她所说的并不一定基于他们对图表的经验。相反,学习者可能已经记住了与图表活动分离的 “讨论”。例如,可以想象,一个学生可能无法跟上在课堂上展示和讨论的图表活动,因此他或她记住了非图表化的短语。考虑到这些考虑,上述问题可以具体化为本文提出的研究问题 1:
(RQ 1) How does a student horizontally and vertically connect verbal terms and diagrams regarding the topic “derivative”? In particular, in which way does he or she use diagrams when speaking about this topic?
(研究问题 1)学生如何在 “导数” 这一主题中水平和垂直地连接口头术语和图表?特别是,他在讨论这一主题时如何使用图表?
Because of the significance of the connection of the diagrams
由于图表
f ( x + h ) − f ( x ) h \frac {f (x + h) - f (x)}{h} hf(x+h)−f(x)
and
lim h → 0 f ( x + h ) − f ( x ) h \lim_{h \to 0} \frac {f (x + h) - f (x)}{h} h→0limhf(x+h)−f(x)
respectively the verbal terms “difference quotient” and “differential quotient”, the question arises not only whether a student connects them, but how this connection is integrated into the student’s line of argumentation. This leads to the second research question:
之间的联系的重要性,以及口头术语 “差商” 和 “导商” 的联系,问题不仅在于学生是否将它们联系起来,还在于这种联系如何融入学生的论证路径中。这导致了第二个研究问题:
(RQ 2) Which lines of thought can be observed when a student acts with diagrams regarding the topic “derivative” and/or speaks about the denotations “difference quotient” and “differential quotient” or “derivative”?
(研究问题 2)当学生在 “导数” 这一主题中使用图表和 / 或讨论 “差商” 和 “导商” 或 “导数” 这些术语时,可以观察到哪些思维路径?
Method
方法
A Method to Explore a Student’s Thinking Processes Regarding the Derivative
探索学生对导数的思维过程的方法
The following requirements guided the decision on which form of communication was chosen for this study: In order to address the research questions, it should be possible for the communicating student to combine the writing of diagrams and speaking about diagram activity. One possibility for such a combination is to use written language. In that way, even in one sentence, a student can reason with diagrams and about diagrams. Since there are pronounced differences between oral and written speech (e.g. Vygotsky, 1986, p. 180), this is discussed below in relation to the form of communication utilized in this study. Furthermore, having the individual work of a student makes it easier to focus on that student. Additionally, in order to minimize the influence on the student after an initial stimulus there should be no further interruption. Finally, the form of communication should enable the student not only to talk about connections in a static way, but also in a procedural way, i.e. how connections are established and not only which. Therefore, the method of imaginary dialogues (Wille 2008, 2017a) was chosen: An imaginary dialogue means that a student works individually to compose a written dialogue between two protagonists discussing a mathematical task or question.5
以下要求指导了选择哪种沟通形式用于本研究的决定:为了回答研究问题,沟通的学生应该能够结合书写图表和讨论图表活动。这样的一种结合方式是使用书面语言。通过这种方式,学生甚至可以在一句话中使用图表进行推理并讨论图表。由于口头和书面语言之间存在显著差异(例如 Vygotsky, 1986, 第 180 页),这将在下面与本研究中使用的沟通形式相关地进行讨论。此外,拥有一个学生的个人作品更容易关注该学生。此外,为了在最初的刺激之后尽量减少对学生的影响,不应再有进一步的中断。最后,沟通形式应该使学生不仅能够以静态的方式讨论联系,还能够以程序化的方式进行讨论,即如何建立联系,而不仅仅是哪些联系。因此,选择了虚构对话的方法(Wille 2008, 2017a):虚构对话意味着一个学生单独创作一个书面对话,其中两个主角讨论一个数学任务或问题。5
The student provides a continuation of a given initial dialogue as shown in Fig. 2. The imaginary dialogue is in written form, but its content is a conceived spoken dialogue. Thus, the imaginary dialogue possesses aspects of spoken and written language. This can be illustrated using Koch and Österreicher’s (2012) model, where forms of communication are placed between two poles: language of immediacy and language of distance either as phonic or graphic realization. Here, imaginary dialogues can be positioned about midway between these two poles on the graphic side (Wille 2017a, p. 37). This means that students tend to write how they understood something rather than only what they understood (cf. ibid., p. 42). The task in the case study presented here was an initial dialogue (see Fig. 2) that was given to grade 11 students in a class at a gymnasium in Graz, Austria, in November 2016. The students’ grades in mathematics from the previous year were also known. Before this task, the students had been taught calculus including the topic of derivative by their teacher.6 Each of the 20 students in the class continued the initial dialogue as individual work. The dialogues were written in German and translated by the author. Because of the focus on the connection “difference quotient”, “differential quotient” (regarding RQ 2), the task addresses a question concerning the limit. When the function f is a polynomial, the limit of the difference quotient can be calculated by first cancelling h in the denominator. Then, in order to obtain the limit, it seems like one is substituting h by 0, even though, in the ε-δ-definition of the limit of a function there is no such substitution. In particular, this does not work for an arbitrary f . However, in the case of polynomials that are mainly treated in school, substituting h by 0 leads to the ostensible problem that “the denominator will become 0” which one protagonist addresses. Since this is a difficult task, the students were not expected to solve this issue extensively. However, the conflict that was addressed in the initial dialogue should encourage the students to reason about horizontal connections, in particular, about the step from the difference quotient to the differential quotient. That way, horizontal connections are slightly more in focus than vertical connections. An additional task that explicitly emphasizes vertical connections is referred to further research.
学生对给定的初始对话进行续写,如图 2 所示。虚构对话是书面形式的,但其内容是一个想象中的口头对话。因此,虚构对话具有口头和书面语言的特征。这可以通过 Koch 和 Österreicher(2012)的模型来说明,在该模型中,沟通形式位于两个极点之间:即时语言和距离语言,无论是语音还是书面实现。在这里,虚构对话可以位于这两个极点之间,偏向书面形式(Wille 2017a, 第 37 页)。这意味着学生倾向于写下他们是如何理解的,而不仅仅是他们理解了什么(参见同上,第 42 页)。在本案例研究中,任务是一个初始对话(见图 2),在 2016 年 11 月,奥地利格拉茨的一所文理中学的 11 年级学生接受了这个任务。学生们上一年的数学成绩也是已知的。在完成这个任务之前,学生们已经由他们的老师教授了微积分,包括导数这一主题。6 班级中的 20 名学生分别续写了初始对话。对话是用德语写的,并由作者翻译。由于重点是 “差商” 和 “导商” 之间的联系(关于研究问题 2),任务涉及一个关于极限的问题。当函数 f 是多项式时,可以通过首先消去分母中的 h 来计算差商的极限。然后,为了得到极限,似乎像是用 0 代替 h,尽管在函数极限的 ε-δ 定义中并没有这样的代换。特别是,这并不适用于任意的 f。然而,在学校主要处理的多项式情况下,用 0 代替 h 似乎会导致 “分母变为 0” 的明显问题,这在对话的一个角色中被提到。由于这是一个困难的任务,学生们并不被期望广泛地解决这个问题。然而,初始对话中提到的冲突应该鼓励学生对水平联系进行推理,特别是关于从差商到导商的步骤。因此,水平联系比垂直联系稍微更受关注。一个明确强调垂直联系的额外任务将在进一步的研究中提及。
Two students are talking to each other. We call them S1 and S2. Continue their dialogue.
两名学生正在互相交谈。我们称他们为 S1 和 S2。继续他们的对话。S1: Hi! Can you explain something for me?
S1:嗨!你能给我解释一下吗?S2: Yes, sure.
S2:当然可以。S1: You know we discussed the derivative in class. First, we had the difference quotient
f ( x 0 − h ) − f ( x 0 ) h \frac{f(x_0 - h) - f(x_0)}{h} hf(x0−h)−f(x0)
Then, there was the limit, whereby h h h approaches 0.
S1:你知道我们在课堂上讨论过导数。首先,我们有差商
f ( x 0 − h ) − f ( x 0 ) h \frac{f(x_0 - h) - f(x_0)}{h} hf(x0−h)−f(x0)
然后,还有极限,其中 h h h 趋近于 0。S2: I remember. What do you want to know?
S2:我记得。你想知道什么?S1: If h h h approaches 0, then the denominator will become 0 and nothing works anymore!
S1:如果 h h h 趋近于 0,那么分母就会变成 0,然后就无法计算了!S2: Okay. I’ll explain it to you clearly with an example what the derivative means. Then, it will also be clear why the limit is there and what happens when h h h approaches 0.
S2:好的。我会用一个例子清楚地向你解释导数的含义。然后,也会清楚为什么极限存在以及当 h h h 趋近于 0 时会发生什么。S1: Thank you very much! Because it is not clear to me, what the difference quotient and the derivative actually are.
S1:非常感谢!因为对我来说,差商和导数到底是什么并不清楚。Fig. 2 The initial dialogue that was given to each student to be continued
图 2 给每个学生继续的初始对话
In order to address the research questions, the aim of the analysis of the students’ imaginary dialogues is to investigate their line of reasoning. Thus, an analysis sheet (see Fig. 4, on the left) was designed for this purpose. The analysis sheet has the same columns as the table of Fig. 1. Additionally, there is one column to notate algebraic-analytical, geometric-graphical, or application-based diagram usage or language usage to speak about diagrams, abbreviated with “a.-a.”, “geo.”, and “appl.”. Furthermore, analysis tables (see Fig. 4, on the right) have been designed to summarize the more detailed analysis sheets. How the sheets and tables were filled in is described below and then illustrated with the help of examples.
为了回答研究问题,对学生虚构对话的分析旨在研究他们的推理路径。因此,为此设计了一个分析表(见图 4,左侧)。分析表的列与图 1 的表相同。此外,还有一个列用于记录代数分析型、几何图形型或应用型的图表使用或讨论图表的语言使用,分别缩写为 “a.-a.”、“geo.” 和 “appl.”。此外,还设计了分析表(见图 4,右侧),以总结更详细的分析表。下面将描述如何填写这些表,并通过例子进行说明。
First Step of the Analysis
分析的第一步
The first step of the analysis for each imaginary dialogue was to fill out an analysis sheet (see Fig. 4, on the left): According to the word use, a phrase is put as a circle in one column. A circle can also denote various phrases (or sentences) in succession, but only if a single verbal term is used and not several. For example, if the question and the following response use the same term, as can be seen in row 4 in Figs. 3 and 4, these phrases are coded as one circle. Phrases such as “Ah, I understand”, which link phrases about mathematics in the dialogue, were not coded in the analysis sheet as separate circles. A circle is shaded if diagrams are used in the phrase. In cases where diagrams are used exclusively, this is notated as a shaded square. For example, the phrase “So imagine that you have a second-degree function” was coded as a non-shaded circle in the column “function/function values”. The phrase “apply the difference quotient
Δ
y
Δ
x
\frac {\Delta y}{\Delta x}
ΔxΔy” was coded as a shaded circle in the column “difference quotient”. And finally, the diagram
f
(
3
+
h
)
−
f
(
3
)
h
\frac {f (3 + h) - f (3)}{h}
hf(3+h)−f(3) was inserted as a shaded square in the column “difference quotient”. All three examples were described as algebraic-analytical.
每个虚构对话的分析的第一步是填写分析表(见图 4,左侧):根据词汇的使用,一个短语被放在一个列中,以一个圆圈表示。一个圆圈也可以表示几个连续的短语(或句子),但前提是只使用了一个口头术语,而不是多个。例如,如果问题和随后的回答使用了相同的术语,如图 3 和图 4 中的第 4 行所示,这些短语被编码为一个圆圈。像 “啊,我明白了” 这样的短语,它们在对话中连接关于数学的短语,没有被编码为单独的圆圈。如果一个短语中使用了图表,那么这个圆圈会被涂黑。在只使用图表的情况下,这被标记为一个涂黑的正方形。例如,“所以想象你有一个二次函数” 这个短语被编码为 “函数 / 函数值” 列中的一个未涂黑的圆圈。“应用差商
Δ
y
Δ
x
\frac {\Delta y}{\Delta x}
ΔxΔy” 这个短语被编码为 “差商” 列中的一个涂黑的圆圈。最后,图表
f
(
3
+
h
)
−
f
(
3
)
h
\frac {f (3 + h) - f (3)}{h}
hf(3+h)−f(3) 被插入到 “差商” 列中,标记为一个涂黑的正方形。所有三个例子都被描述为代数分析型。
差商和导数的概念
S2: The difference quotient is the average change between two x x x values, how it changes on average in this interval.
S2:差商是两个 x x x 值之间的平均变化,在这个区间内它平均如何变化。S1: I see, I understand.
S1:我明白了,我理解了。But, what is now the derivative?
但是,现在导数是什么?S2: The derivative of a function yields a graph, which gives the slope of the original function.
S2:函数的导数产生一个图形,它给出了原始函数的斜率。For example the derived x 2 x^2 x2 is a linear function, a straight line, where you can read out the slope at any moment.
例如,导出的 x 2 x^2 x2 是一个线性函数,一条直线,你可以随时读出斜率。S1: At any moment, is that the difference quotient, too?
S1:在任何时刻,那也是差商吗?S2: No, that is the differential quotient, which is d y d x \frac{dy}{dx} dxdy.
S2:不,那是导数,即 d y d x \frac{dy}{dx} dxdy。It yields the slope at any moment.
它在任何时刻都给出斜率。That has something to do with the limit.
这与极限有关。From the difference quotient you can get to the differential quotient.
从差商你可以得到导数。You can also calculate it by inserting the x x x value of the point in the equation of the derivative function.
你还可以通过将点的 x x x 值插入导数函数的方程来计算它。S1: Thank you very much! Now, I understand it much better!
S1:非常感谢!现在,我理解得更好了!S2: By the way: Within the formula f ( x 0 − h ) − f ( x 0 ) h \frac{f(x_0 - h) - f(x_0)}{h} hf(x0−h)−f(x0), x 0 x_0 x0 stands for the first x x x value and h h h yields the distance to the second x x x value.
S2:顺便说一下:在公式 f ( x 0 − h ) − f ( x 0 ) h \frac{f(x_0 - h) - f(x_0)}{h} hf(x0−h)−f(x0) 中, x 0 x_0 x0 代表第一个 x x x 值,而 h h h 产生到第二个 x x x 值的距离。Instead of h h h there could be Δ x \Delta x Δx.
h h h 可以被 Δ x \Delta x Δx 替代。
Fig. 4 The analysis sheet and analysis tables for Oliver’s imaginary dialogue
In the analysis sheet, circles can be connected by lines, either dashed or solid: Two circles are connected by a dashed line if two terms are connected by speaking about them. For example, a sentence like “You should know, that the difference quotient is the rate of change” was denoted as two non-shaded circles in the column “difference quotient”, the first labelled as algebraic-analytical, the second application-based, and both connected by a dashed line. However, two circles or squares are connected by a solid line, if two diagrams are linked diagrammatically, either horizontally by diagrammatic activity or vertically by describing the diagrammatical correspondence of an algebraic-analytical and geometric-graphical diagram. For example, the equation
在分析表中,圆圈可以通过线条连接,无论是虚线还是实线:如果两个术语通过讨论它们而连接起来,那么两个圆圈就用虚线连接。例如,像 “你应该知道,差商是变化率” 这样的句子被标记为 “差商” 列中的两个未涂黑的圆圈,第一个标记为代数分析型,第二个标记为应用型,并且两者用虚线连接。然而,如果两个图表通过图表活动水平连接,或者通过描述代数分析型和几何图形型图表之间的图表对应关系垂直连接,那么两个圆圈或正方形就用实线连接。例如,方程
4 + 4 h + h 2 − 4 h = 4 h + h 2 h \frac{\cancel{4} + 4h + h^2 - \cancel{4}}{h} = \frac{4h + h^2}{h} h4 +4h+h2−4 =h4h+h2
was denoted as two shaded squares in the row difference quotient and connected with a solid line. A solid line together with a dashed line denotes a connection by diagrammatic activity and speaking about it. For example, the sentence: “And if I have for example f ( x ) = x 3 f (x) = x^3 f(x)=x3, it will be f ′ ( x ) = 3 x 2 f'(x) = 3x^2 f′(x)=3x2, won’t it?” was denoted as a shaded circle in the column “function/function value” and a shaded circle in the column “derivative” connected with two parallel lines, one of them solid, the other dashed. That way the line of the student’s thoughts that he or she put on paper can be displayed for each imaginary dialogue.
被标记为 “差商” 行中的两个涂黑的正方形,并用实线连接。实线和虚线一起表示通过图表活动和讨论它们来建立的联系。例如,句子 “如果我有例如 f ( x ) = x 3 f (x) = x^3 f(x)=x3,那么它的导数将是 f ′ ( x ) = 3 x 2 f'(x) = 3x^2 f′(x)=3x2,不是吗?” 被标记为 “函数 / 函数值” 列中的一个涂黑的圆圈和 “导数” 列中的一个涂黑的圆圈,它们通过两条平行线连接,其中一条是实线,另一条是虚线。这样就可以为每个虚构对话展示学生写在纸上的思维路径。
Second Step of the Analysis
分析的第二步
In a second step of the analysis, condensed analysis tables (see Fig. 4, on the right) were built from each analysis sheet.7 The tables can be seen as summaries of the corresponding analysis sheets, in order to see at a glance, with regard to RQ 1, the totality of the established connections. When in an analysis sheet the circles are connected it is regarded as one line of thought. As soon as two circles are not connected, the second circle is understood as the beginning of another line of thought. For example, in his imaginary dialogue a student first talks about the difference quotient and then he writes: “Okay. Let’s come to the derivative.” This sentence and the sentences that follow do not refer to the previous content. Therefore, a non-shaded circle in the column of “differential quotient” is drawn without a line connecting it to the previous circle. At this point I would like to emphasize that with connected or unconnected circles only a statement is made about what appears on paper in the imagined dialogue as a line of thought. Each analysis table now represents exactly one line of thought, as it becomes visible in the imaginary dialogue. Therefore, several analysis tables can belong to one analysis sheet. A circle in a table field denotes that, in the corresponding line of thought within the analysis sheet, one or several circles can be found in the same column and are denoted with the same label (“a.-a”, “geo.”, or “appl.”). For example, a shaded circle in the table field “algebraic-analytical/differential quotient” denotes that in the line of thought within the corresponding analysis sheet, there is either at least one shaded circle in the column “differential quotient” which is denoted as “algebraic-analytical”, or there is at least one non-shaded circle and, in addition, at least one shaded square, both in the column “differential quotient” and denoted as “algebraic-analytical”.
在分析的第二步中,从每个分析表中构建了简化的分析表(见图 4,右侧)。7 这些表可以被视为相应分析表的总结,以便一眼就能看到,就研究问题 1 而言,所建立的所有联系。当在分析表中圆圈被连接时,它被视为一个思维路径。一旦两个圆圈没有连接,第二个圆圈就被理解为另一个思维路径的开始。例如,在他的虚构对话中,一个学生首先谈论差商,然后他写道:“好吧。我们来谈谈导数。” 这个句子以及随后的句子都没有提到之前的内容。因此,在 “导商” 列中画了一个未涂黑的圆圈,没有线将它与前面的圆圈连接起来。在这里,我想强调的是,通过连接或未连接的圆圈,只对虚构对话中作为思维路径出现的内容进行了陈述。每个分析表现在正好代表虚构对话中可见的一个思维路径。因此,一个分析表可以属于多个分析表。表中的一个圆圈表示,在分析表中相应的思维路径中,可以在同一列中找到一个或多个圆圈,并且它们被标记为相同的标签(“a.-a”、“geo.” 或 “appl.”)。例如,“代数分析型 / 导商” 表中的一个涂黑的圆圈表示,在相应的分析表中的思维路径中,“导商” 列中至少有一个被标记为 “代数分析型” 的涂黑圆圈,或者至少有一个未涂黑的圆圈,并且至少有一个涂黑的正方形,它们都被标记为 “代数分析型”。
7The notation of the shaded and non-shaded circles in tables is inspired by a study of Zandieh (2000). However, Zandieh’s circles denote something different than the study presented here.
7 表中涂黑和未涂黑圆圈的标记方式是受到 Zandieh(2000)研究的启发。然而,Zandieh 的圆圈表示的内容与本文介绍的研究不同。
Dashed lines in the analysis sheet are not specially denoted in the analysis table, since two circles in the same table already means that they belong to one line of thought. However, solid lines in the analysis sheet are notated as solid lines in the table as well. That way, the diagrams which a student connects diagrammatically can be seen.
分析表中的虚线在分析表中没有特别标记,因为表中的两个圆圈已经意味着它们属于一个思维路径。然而,分析表中的实线也在表中以实线标记。这样,就可以看到学生图表式连接的图表。
Results
结果
Before the analysis sheets and tables are discussed and compared as a whole, two imaginary dialogues are presented in detail to visualize how they are reflected in the sheets and tables. In addition, a brief insight into the imaginary dialogues of three other students is given.
在对分析表和表进行整体讨论和比较之前,将详细介绍两个虚构对话,以展示它们如何在表和表中得到反映。此外,还将简要介绍另外三名学生的虚构对话。
Two Examples in Detail
两个详细示例
The first imaginary dialogue is written by Oliver, a low-achieving student8 and the second imaginary dialogue is written by a high-achieving student called Jakob.9
第一个虚构对话是由成绩较差的学生 Oliver 撰写的,第二个虚构对话是由成绩较好的学生 Jakob 撰写的。9
Oliver’s Imaginary Dialogue
Oliver 的虚构对话
The English translation of Oliver’s imaginary dialogue can be found in Fig. 3.10 In order to better see the single phrases that were coded, more line breaks were inserted into the text than Oliver used himself. Thereby, a numbered row in Fig. 3 visualizes to which circle in a column on the analysis sheet the phrase belongs.11 Therefore, in what follows, the term “row” is used in a broader sense than usual to correspond to one circle in the analysis sheet. Figure 4 shows the corresponding analysis sheet and tables. Oliver starts by talking about the difference quotient and connects vertically the algebraic-analytical and applications-based terms “difference quotient” and “average change”. In row 3, Oliver explains the latter in more detail. Up to this point, he does not use any diagrams, therefore the circles in the analysis sheet are not shaded. In row 4, Oliver begins to talk about the derivative without an explicit connection to the previous part. Therefore this is coded with no connecting line between the circles and taken as a different line of thought. In rows 5 to 9, Oliver explains that the derivative is connected to the “slope of the original function” and that the derivative of
x
2
x^2
x2 is a linear function, “where you can read out the slope at any moment” (row 9). In the analysis sheet, it can be seen how Oliver’s line of thought is mainly situated in the column “differential quotient, derivative”, with only one jump to the column “function, value of a function”, which is the only phrase so far where he uses a diagram. According to the table in Fig. 1, Oliver mainly connects denotations vertically that refer to algebraic-analytical and geometric-graphical representational systems, but only with sporadic diagram use. He writes the first isolated diagram after one jump to the “function, value of a function” column without operating diagrammatically with it. Instead he explains the outcome of an operation (i.e. deriving a function) with the words “linear function”. With rows 9, 10, and 11, Oliver connects verbal terms horizontally in the column “differential quotient, derivative” and “difference quotient”, again using a diagram without acting on it: Oliver’s diagram use in row 11 is similar to the diagram use in row 6: he writes down a diagram without further experimenting with it. After this, he connects once again vertically algebraic-analytical in row 11 with geometric-graphical denotations in row 12. Now, starting from rows 13 to 16, Oliver moves to the term “limit” and says vaguely: “That has something to do with the limit” (row 13). Oliver does not use diagrams or diagrammatic activity regarding the limit. Moreover, in the further course of the imaginary dialogue limit is not taken up again. Instead, he describes a horizontal connection of the terms “difference quotient” and “differential quotient” with the sentence: “From the difference quotient you can get to the differential quotient” (rows 14 and 15), but he does not specify this transition, neither diagrammatically nor by speaking about diagrammatic activities. In row 16, there is a diagram,
x
x
x, that is part of the diagram of the derivative, but since it is not the whole diagram, the corresponding circle is denoted non-shaded. At the end, rows 17 and 18 are disconnected from the part above. How this part relates to what came before is not explicitly discussed, thus, there is no line connecting row 16 and row 17. In row 17, Oliver talks about the diagram
f
(
x
0
+
h
)
−
f
(
x
0
)
h
\frac {f (x_0 + h) - f (x_0)}{h}
hf(x0+h)−f(x0) and explains the meaning of
x
0
x_0
x0 and
h
h
h. It ends with the only diagrammatic operation in this imaginary dialogue, in which Oliver substitutes
h
h
h for
Δ
x
\Delta x
Δx in row 18. Regarding RQ 2, overall on Oliver’s analysis sheet, it can be seen that he often connects denotations vertically. Furthermore, if he changes the column, he does so in rather wide jumps. Only in the lower middle part there are smaller horizontal steps, which also mention the limit (in row 13), but with no diagrammatic activity. In particular, the connections in row 13 to 15 are not from left to right, to see how to get to the differential quotient, but the other way around. The three corresponding analysis tables (see Fig. 4, on the right) visualize Oliver’s horizontal and vertical connections: The first table corresponds to rows 1 to 3, the second to rows 4 to 16, and the third to rows 17 and 18. Regarding RQ 1, it can be seen that Oliver only rarely uses diagrams and there are no diagrammatic activities concerning horizontal connection. Oliver’s vertical connections are only non-diagrammatical: Although he writes an algebraic-analytical diagram for the derivative, as can be seen in the second analysis table, a diagram in the geometric-graphical representation system is not used.
Oliver 的虚构对话的英文翻译可以在图 3 中找到。10 为了更好地看到被编码的单个短语,比 Oliver 自己使用的行数更多地插入了换行符。因此,图 3 中的一个编号行可视化了分析表中某一列中的一个圆圈对应的短语。11 因此,在下文中,“行” 一词的使用比通常更广泛,以对应分析表中的一个圆圈。图 4 显示了相应的分析表和表。Oliver 首先谈论差商,并且垂直连接了代数分析型和应用型术语 “差商” 和 “平均变化”。在第 3 行,Oliver 更详细地解释了后者。到目前为止,他没有使用任何图表,因此分析表中的圆圈没有被涂黑。在第 4 行,Oliver 开始谈论导数,但没有明确与前一部分的联系。因此,这被编码为没有连接线的圆圈,并被视为一个不同的思维路径。在第 5 行到第 9 行,Oliver 解释说导数与 “原函数的斜率” 有关,
x
2
x^2
x2 的导数是一个线性函数,“你可以随时读出斜率”(第 9 行)。在分析表中,可以看出 Oliver 的思维路径主要位于 “导商,导数” 列,只跳转到 “函数,函数值” 列一次,这也是他目前唯一使用图表的地方。根据图 1 中的表,Oliver 主要垂直连接代数分析型和几何图形型表示系统的术语,但只偶尔使用图表。他在跳转到 “函数,函数值” 列后写下了第一个孤立的图表,但没有图表式地操作它。相反,他用 “线性函数” 这个词来解释一个操作的结果(即求导)。在第 9 行、第 10 行和第 11 行,Oliver 在 “导商,导数” 和 “差商” 列中水平连接口头术语,再次使用图表但没有对其操作:Oliver 在第 11 行的图表使用与第 6 行的图表使用相似:他写下了一个图表,但没有进一步对其实验。在这之后,他再次垂直连接代数分析型(第 11 行)与几何图形型术语(第 12 行)。现在,从第 13 行到第 16 行开始,Oliver 转向 “极限” 这一术语,并含糊地说:“这与极限有关”(第 13 行)。Oliver 没有使用图表或图表活动来讨论极限。此外,在虚构对话的后续过程中,极限没有再次被提及。相反,他用 “从差商可以得到导商”(第 14 行和第 15 行)这句话描述了 “差商” 和 “导商” 这两个术语之间的水平联系,但他没有具体说明这种转换,无论是图表式地还是通过讨论图表活动。在第 16 行,有一个图表,
x
x
x,它是导数图表的一部分,但由于它不是完整的图表,相应的圆圈被标记为未涂黑。在最后,第 17 行和第 18 行与上面的部分断开连接。这一部分与前面的内容如何关联没有被明确讨论,因此,没有线连接第 16 行和第 17 行。在第 17 行,Oliver 谈论了图表
f
(
x
0
+
h
)
−
f
(
x
0
)
h
\frac {f (x_0 + h) - f (x_0)}{h}
hf(x0+h)−f(x0) 并解释了
x
0
x_0
x0 和
h
h
h 的含义。它以这个虚构对话中唯一的图表操作结束,在第 18 行,Oliver 用
Δ
x
\Delta x
Δx 替换了
h
h
h。关于研究问题 2,在 Oliver 的分析表中,总体上可以看出他经常垂直连接术语。此外,当他改变列时,他通常会跳过较宽的范围。只有在中间靠下的部分有一些较小的水平步骤,也提到了极限(在第 13 行),但没有图表活动。特别是,第 13 行到第 15 行的连接不是从左到右,以看到如何得到导商,而是相反的方向。三个相应的分析表(见图 4,右侧)可视化了 Oliver 的水平和垂直连接:第一个表对应第 1 行到第 3 行,第二个表对应第 4 行到第 16 行,第三个表对应第 17 行和第 18 行。关于研究问题 1,可以看出 Oliver 很少使用图表,并且没有关于水平连接的图表活动。Oliver 的垂直连接只是非图表式的:尽管他在第二个分析表中写了一个代数分析型的导数图表,但没有使用几何图形型表示系统中的图表。
Jakob’s Imaginary Dialogue
Jakob 的虚构对话
In contrast, Jakob is a high-achieving student. His imaginary dialogue and the corresponding analysis sheet and table can be seen in Fig. 5.
相比之下,Jakob 是一名成绩较好的学生。他的虚构对话以及相应的分析表和表可以在图 5 中看到。
如何从差商过渡到导数,以及如何通过极限的概念来理解导数。
S2: Let’s look at this example: f ( x ) = x 2 + 4 f(x) = x^2 + 4 f(x)=x2+4
S2:让我们看这个例子: f ( x ) = x 2 + 4 f(x) = x^2 + 4 f(x)=x2+4S1: Okay, and what do we do with it, now?
S1:好的,我们现在用它做什么?S2: We calculate the difference quotient. For that, we substitute:
S2:我们计算差商。为此,我们代入:( x + h ) 2 + 4 − ( x 2 + 4 ) h \frac{(x+h)^2 + 4 - (x^2 + 4)}{h} h(x+h)2+4−(x2+4)
Now we can multiply everything out
现在我们可以展开所有项x 2 + 2 x h + h 2 + 4 − x 2 − 4 h \frac{x^2 + 2xh + h^2 + 4 - x^2 - 4}{h} hx2+2xh+h2+4−x2−4
If we factor out and cancel, we can remove the h h h in the denominator.
如果我们提取并约去,我们可以消去分母中的 h h h。h ( 2 x + h ) h = 2 x + h \frac{h(2x + h)}{h} = 2x + h hh(2x+h)=2x+h
That way the problem of dividing by 0 is solved.
这样除以0的问题就解决了。Now, if the x x x value changes by h h h, we can calculate how the function values change on average in the interval [ x ; x + h ] [x; x + h] [x;x+h].
现在,如果 x x x 值变化 h h h,我们可以计算函数值在区间 [ x ; x + h ] [x; x + h] [x;x+h] 上的平均变化。S1: Okay. Thus, this is the difference quotient?
S1:好的。因此,这是差商?S2: Exactly.
S2:完全正确。S1: And the differential quotient?
S1:那么导数呢?S2: Well, if the change of the x x x values (that means h h h) becomes steadily smaller and approaches zero, then the interval in which we calculate the average rate becomes steadily smaller.
S2:如果 x x x 值的变化(即 h h h)变得越来越小并接近零,那么我们计算平均率的区间就会变得越来越小。Therefore, if we now assume that the x x x values do not change at all, i.e., h h h is zero,
因此,如果我们现在假设 x x x 值根本不变,即 h h h 为零,we can calculate, with the help of what we calculated before, for each x x x value the average rate exactly at this point.
我们可以通过之前计算的结果,为每个 x x x 值计算出这一点的精确平均变化率。Therefore, 2 x + 0 2x + 0 2x+0 is the function of the derivative that can be used to calculate the average rate for just every x x x value.
因此, 2 x + 0 2x + 0 2x+0 是导数函数,可以用来计算每个 x x x 值的平均变化率。
Even a glance at Jakob’s analysis sheet reveals great differences between his and Oliver’s imaginary dialogue regarding RQ 2. One can see a movement, starting in the column “function, value of a function” via the columns “difference quotient” and “limit” to the column “differential quotient, derivative”. Furthermore, the shaded circles and the solid connections display a line of diagrammatic activity. All the circles are connected. There are no breaks between the different lines of thought that can be read in the imaginary dialogue. Looking at Jakob’s imaginary dialogue in more detail, it can be seen that he starts with a concrete example
f
(
x
)
=
x
2
+
4
f (x) = x^2 + 4
f(x)=x2+4, thus, a diagram, and transforms the corresponding difference quotient until he can cancel
h
h
h in the denominator (rows 4 and 5). In row 6 Jakob states that the problem
h
=
0
h = 0
h=0 that was mentioned in the initial dialogue in connection with the limit has now been solved. The following rows explain with the help of diagrammatic operations, why, in Jakob’s view, the problem actually is solved. In particular, the diagrams in rows 5, 10, 12, and 14 are connected by diagrammatic activity. Moreover, in the middle (rows 8 and 9), there is a short excursion in which Jakob clarifies the terms “difference quotient” and “differential quotient” and at the end, in rows 11, 13, and 15, he vertically connects application-based terms with algebraic-analytical denotations that he uses otherwise. The analysis table in Fig. 5 (on the right) displays Jakob’s horizontal and vertical connections. It becomes apparent, regarding RQ 1, that Jakob mainly argues within the algebraic-analytical system of representations. In particular, all circles in the “algebraic-analytical” row are shaded and connected to each other with solid lines. This means that Jakob not only speaks about the steps from a function to its derivative, but also uses diagrams at every point, which are connected by diagrammatic activities. Only the difference of function values is not mentioned explicitly, since he moves directly from a concrete function to the corresponding difference quotient. In comparison, vertical connections are only made to application-based terms at two columns. Thus, it can be said that Jakob acts with diagrams in order to connect all significant (horizontal) steps from a function to its derivative within the algebraicanalytical system of representations. Vertical connections are only rarely and non-diagrammatically made.
即使只是简单地看一下 Jakob 的分析表,也可以明显看出他的虚构对话与 Oliver 的虚构对话在研究问题 2 方面存在巨大差异。可以看到一个从 “函数,函数值” 列开始,经过 “差商” 和 “极限” 列,到 “导商,导数” 列的运动。此外,涂黑的圆圈和实线连接显示了一条图表活动的路径。所有的圆圈都连接在一起。在虚构对话中可以读到的不同思维路径之间没有中断。更详细地查看 Jakob 的虚构对话,可以看出他从一个具体的例子
f
(
x
)
=
x
2
+
4
f (x) = x^2 + 4
f(x)=x2+4 开始,即一个图表,并将相应的差商转换,直到他可以在分母中消去
h
h
h(第 4 行和第 5 行)。在第 6 行,Jakob 指出,在初始对话中与极限相关提到的问题
h
=
0
h = 0
h=0 现在已经解决了。接下来的几行通过图表操作解释了为什么,从 Jakob 的角度来看,这个问题实际上已经解决了。特别是,第 5 行、第 10 行、第 12 行和第 14 行的图表通过图表活动连接。此外,在中间(第 8 行和第 9 行),Jakob 简要阐述了 “差商” 和 “导商” 这两个术语,最后,在第 11 行、第 13 行和第 15 行,他将应用型术语与他通常使用的代数分析型术语垂直连接。图 5(右侧)中的分析表显示了 Jakob 的水平和垂直连接。关于研究问题 1,可以看出 Jakob 主要在代数分析型表示系统内进行论证。特别是,“代数分析型” 行中的所有圆圈都被涂黑,并且通过实线相互连接。这意味着 Jakob 不仅讨论了从函数到其导数的步骤,而且在每一点都使用了图表,这些图表通过图表活动连接。只有函数值的差没有被明确提及,因为他直接从一个具体的函数移动到相应的差商。相比之下,垂直连接只在两列中与应用型术语进行了连接。因此,可以说 Jakob 通过图表活动,将代数分析型表示系统内从函数到其导数的所有重要(水平)步骤连接起来。垂直连接只是偶尔且非图表式地进行。
A Comparison of Oliver’s and Jakob’s Imaginary Dialogues
Oliver 和 Jakob 的虚构对话比较
Comparing Oliver’s and Jakob’s imaginary dialogues and their corresponding analysis sheets and tables, two main differences become apparent: The first is their use (or non-use) of diagrams when moving between different “places” (i.e. columns in the analysis sheets and tables) concerning how to get to the derivative. Jakob demonstrates by example, by using the diagram
f
(
x
)
=
x
2
+
4
f (x) = x^2 + 4
f(x)=x2+4, how the diagram
(
x
+
h
)
2
+
4
−
(
x
2
+
4
)
h
\frac {(x+h)^2 + 4 - (x^2 + 4)}{h}
h(x+h)2+4−(x2+4) is built and how with diagrammatic operations one can reach the diagram
2
x
+
0
2x + 0
2x+0 that he terms “function of the derivative”. That way, he can even address the ostensible problem of the division by 0 when
h
h
h in the denominator approaches 0. In contrast, Oliver writes diagrams rarely and does not operate with diagrams, except in one point when substituting
h
h
h by
Δ
x
\Delta x
Δx. In particular, the derivative of
f
(
x
)
=
x
2
f (x) = x^2
f(x)=x2 is named a “linear function” without writing the corresponding diagram (row 7). Moreover, the ostensible problem of the division by 0 is not addressed. The second is the difference in the length of the steps between the columns. While Jakob takes small steps, and there is an overall movement from the column “function, value of a function” to the column “differential quotient, derivative”, Oliver more often remains vertical in a column and then jumps across several columns. Furthermore, Jakob’s imagined dialogue seems like a coherent line of thought, whereas Oliver’s dialogue shows breaks, which are then reflected in several tables per line of thought. Such differences are also apparent, when the analysis sheets and tables of the entire class are considered.
比较 Oliver 和 Jakob 的虚构对话以及它们相应的分析表和表,可以看出两个主要差异:第一,他们在移动到不同的 “位置”(即分析表和表中的列)以求导数时使用(或不使用)图表。Jakob 通过使用图表
f
(
x
)
=
x
2
+
4
f (x) = x^2 + 4
f(x)=x2+4 举例说明了如何构建图表
(
x
+
h
)
2
+
4
−
(
x
2
+
4
)
h
\frac {(x+h)^2 + 4 - (x^2 + 4)}{h}
h(x+h)2+4−(x2+4),并通过图表操作达到他称为 “导数函数” 的图表
2
x
+
0
2x + 0
2x+0。通过这种方式,他甚至可以解决当分母中的
h
h
h 趋近于 0 时除以 0 的明显问题。相比之下,Oliver 很少写图表,并且除了在用
Δ
x
\Delta x
Δx 替换
h
h
h 这一点之外,他不使用图表进行操作。特别是,
f
(
x
)
=
x
2
f (x) = x^2
f(x)=x2 的导数被命名为 “线性函数”,而没有写出相应的图表(第 7 行)。此外,除以 0 的明显问题没有被解决。第二,列与列之间的步长差异。虽然 Jakob 采取小步,整体上从 “函数,函数值” 列移动到 “导商,导数” 列,但 Oliver 更频繁地在一个列中保持垂直,然后跳过几列。此外,Jakob 的虚构对话似乎是一条连贯的思维路径,而 Oliver 的对话显示出中断,这些中断随后反映在每个思维路径的几张表中。当考虑整个班级的分析表和表时,这种差异也很明显。
Further Insights in the Students’ Imaginary Dialogues
学生虚构对话的进一步见解
The following examples will provide insight into how a student vertically connects diagrams and how he speaks about the connection between functions and their derivative while omitting diagram activity. In addition, examples are given where students have difficulty talking about the limit.
以下示例将提供关于学生如何垂直连接图表以及他在省略图表活动的情况下如何谈论函数与其导数之间的联系的见解。此外,还提供了学生在谈论极限时遇到困难的例子。
Peter’s Vertical and Horizontal Connections
Peter 的垂直和水平连接
Peter is an average-achieving student. His imaginary dialogue and the corresponding analysis sheet and analysis tables can be seen in Fig. 6. On the one hand, he vertically connects diagrams by explaining their correspondence in different representational systems (rows 1 to 8). On the other hand, he discusses horizontal connections only between functions and their derivatives, but without the steps in between and especially without any diagrammatic activity. For Peter, the connection between a function and its derivative is only a kind of “relationship”, where “square functions become linear” (rows 9 to 16). This reads as if the square function disappears and (magically?) becomes a linear function. Furthermore, Peter writes that this relationship can be recognized regarding special points of the functions without explaining why. In particular, Peter compares the two diagrams
f
(
x
)
f (x)
f(x) and
f
′
(
x
)
f'(x)
f′(x) by speaking about them, but in the whole imaginary dialogue there is no explanation how the differential quotient is derived from a function by diagrammatic activity, neither in the algebraic-analytical representational system nor in the geometric-graphical. This can also be seen in Peter’s analysis sheet (see Fig. 6): First, he stays in the “difference quotient” column including two solid lines (between rows 3 and 4 and rows 6 and 7). After a split up he jumps non-diagrammatically between the column “function, value of function”, and the column “differential quotient, derivative” without a connection to the first part. Thus, Peter only refers to the diagrams themselves, but not to the diagrammatical connections that link diagrams belonging to different columns. In particular, he compares diagrams without referring to their diagrammatical connections.
Peter 是一名成绩中等的学生。他的虚构对话以及相应的分析表和分析表可以在图 6 中看到。一方面,他通过解释不同表示系统中图表的对应关系来垂直连接图表(第 1 行到第 8 行)。另一方面,他只讨论函数与其导数之间的水平连接,但没有中间步骤,特别是没有任何图表活动。对 Peter 来说,函数与其导数之间的联系只是一种 “关系”,其中 “平方函数变成了线性函数”(第 9 行到第 16 行)。这看起来像是平方函数消失了,并且(神奇地?)变成了线性函数。此外,Peter 写道,这种关系可以通过函数的特殊点来识别,但没有解释原因。特别是,Peter 通过谈论它们来比较两个图表
f
(
x
)
f (x)
f(x) 和
f
′
(
x
)
f'(x)
f′(x),但在整个虚构对话中,没有解释如何通过图表活动从函数导出导商,无论是在代数分析型表示系统还是几何图形型表示系统中。这也可以在 Peter 的分析表中看到(见图 6):首先,他在 “差商” 列中停留,包括两条实线(在第 3 行和第 4 行之间以及第 6 行和第 7 行之间)。在分裂后,他非图表式地在 “函数,函数值” 列和 “导商,导数” 列之间跳跃,与第一部分没有联系。因此,Peter 只提到了图表本身,而不是连接属于不同列的图表的图表式联系。特别是,他比较图表时没有提到它们的图表式联系。
差商和导数的概念
S2: So first, the difference quotient.
S2:首先,是差商。You can use it to calculate the average slope in a certain section in a function.
你可以用它来计算函数中某个部分的平均斜率。You simply calculate Δ y Δ x \frac{\Delta y}{\Delta x} ΔxΔy.
你只需计算 Δ y Δ x \frac{\Delta y}{\Delta x} ΔxΔy。S1: You simply calculate y 1 − y 0 x 1 − x 0 \frac{y_1 - y_0}{x_1 - x_0} x1−x0y1−y0.
S1:你只需计算 y 1 − y 0 x 1 − x 0 \frac{y_1 - y_0}{x_1 - x_0} x1−x0y1−y0。S1: And why does this result in the average slope?
S1:为什么这会得到平均斜率?S2: Imagine a triangle in the graph between the dots. Something like that:
S2:想象一下在点之间的图表中有一个三角形。就像这样:(图中显示了一个在 x 0 x_0 x0 和 x 1 x_1 x1 之间的点形成的三角形,斜边表示斜率)
By calculating Δ x Δ y \frac{\Delta x}{\Delta y} ΔyΔx, you get the average slope in the range x 0 x_0 x0 to x 1 x_1 x1 by the law of tangents.
通过计算 Δ x Δ y \frac{\Delta x}{\Delta y} ΔyΔx,你可以通过切线法则得到从 x 0 x_0 x0 到 x 1 x_1 x1 范围内的平均斜率。S2: The derivative is actually only an alternative to the differential quotient to get from f ( x ) f(x) f(x) to a related function [ f ′ ( x ) ] [f'(x)] [f′(x)].
S2:导数实际上是从 f ( x ) f(x) f(x) 到相关函数 [ f ′ ( x ) ] [f'(x)] [f′(x)] 的差商的替代方法。S1: HEY! That’s not possible! You’re here to explain it to me!
S1:嘿!那不可能!你在这里是向我解释的!S2: All right… So: During derivation, for example, square functions become linear and so…
S2:好吧… 所以:在求导过程中,例如,平方函数变成线性函数,等等…You can recognize the “relationship” of the two functions by the fact that their intercepts, local extrema, inflection points or global extrema are similar to each other.
你可以通过它们的截距、局部极值、拐点或全局极值彼此相似这一事实来识别这两个函数的“关系”。
Fig. 6 Peter’s imaginary dialogue (with a little error concerning where to draw x 0 x_0 x0 and x 1 x_1 x1 into the graph, and some confusion between “law of tangents” and “tangents”) and the analysis sheet and analysis tables for his imaginary dialogue
图 6 Peter 的虚构对话(在图中绘制 x 0 x_0 x0 和 x 1 x_1 x1 的位置有小错误,并且 “切线法则” 和 “切线” 之间有些混淆)以及他的虚构对话的分析表单和分析表格
Katharina and Maria: Problems with Speaking About the Limit
Katharina 和 Maria:谈论极限的问题
However, it cannot be said that the use of diagrams always leads to speaking correctly about denotations. This becomes particularly clear when students talk about the limit. In some imaginary dialogues, for example, it is not clear whether the students can distinguish between the 0, to which
h
h
h approaches, and the limit of the difference quotient itself. For instance, Katharina, an average-achieving student, writes:
然而,不能说使用图表总是会导致正确地谈论术语。当学生谈论极限时,这一点尤其明显。例如,在一些虚构对话中,不清楚学生是否能区分
h
h
h 趋近的 0 和差商本身的极限。例如,成绩中等的学生 Katharina 写道:
This
f
(
x
)
−
f
(
x
0
)
f (x) - f (x_0)
f(x)−f(x0) (here
x
x
x approaches 0) is actually the same as
f
(
x
0
+
h
)
−
f
(
x
0
)
f (x_0 + h) - f (x_0)
f(x0+h)−f(x0) (here
h
h
h approaches 0). This means that the variable is approaching the limit, i.e. as close to 0 as possible.
这个
f
(
x
)
−
f
(
x
0
)
f (x) - f (x_0)
f(x)−f(x0)(这里
x
x
x 趋近于 0)实际上与
f
(
x
0
+
h
)
−
f
(
x
0
)
f (x_0 + h) - f (x_0)
f(x0+h)−f(x0)(这里
h
h
h 趋近于 0)是一样的。这意味着变量正在趋近于极限,即尽可能接近 0。
Katharina writes “
x
x
x approaches 0” instead of
x
0
x_0
x0, but this could be a typo because above, she writes
lim
x
→
x
0
\lim_{x \to x_0}
limx→x0 correctly. However, later in the text it is not clear what exactly Katharina means by the term “limit”, although in her imaginary dialogue she nicely connects the difference quotient with the differential quotient with diagrammatic activity. Similarly, in the imaginary dialogue of another student, Maria, it is not clear, what exactly she is referring to with the term “limit” when she writes: “The limit (in German “Limes”) is equal to the limit (in German “Grenzwert”), i.e. the smallest value that
h
h
h may take so that it does not become 0.”12
Katharina 写的是 “
x
x
x 趋近于 0” 而不是
x
0
x_0
x0,但这可能是一个打字错误,因为上面她正确地写了
lim
x
→
x
0
\lim_{x \to x_0}
limx→x0。然而,在后面的文本中,不清楚 Katharina 所说的 “极限” 到底是什么意思,尽管在她的虚构对话中,她很好地通过图表活动将差商与导商联系起来。同样,在另一个学生 Maria 的虚构对话中,当她写道:“极限(德语中的‘Limes’)等于极限(德语中的‘Grenzwert’),即
h
h
h 可以取的最小值,以使其不为 0。” 时,不清楚她所说的 “极限” 到底是什么意思12。
Comparing the Analysis Sheets and Analysis Tables of the Entire Class
比较整个班级的分析表和分析表
A Response to RQ 2: Movements on the Analysis Sheet
对研究问题 2 的回应:分析表上的运动
In considering the analysis sheets of the entire class, different types of movements between the columns are evident:
在考虑整个班级的分析表时,列与列之间的不同类型的运动是显而易见的:
・Walk: Small movements between columns can be considered as a walk on the analysis sheet. Jakob’s imaginary dialogue is an example: Jakob reasons about specific steps within the process that leads to the derivative. Some of the “walking” students mainly speak about this “walk” with no or little diagram use (as can be seen in Fig. 7 on the left). Others, such as Jakob, use diagrams and operations on diagrams to a large extent.
・小步:列与列之间的微小移动可以被视为在分析表上的 “行走”。Jakob 的虚构对话就是一个例子:Jakob 对导致导数的过程中的具体步骤进行了推理。一些 “行走” 的学生主要谈论这种 “行走”,几乎没有使用图表(如图 7 左侧所示)。其他人,如 Jakob,大量使用图表及其操作。
・Jump: Larger movements between columns appear as jumps on the analysis sheet. Most jumps appear between the columns “function, value of function” and “differential quotient, derivative”, others between the columns “difference quotient” and “differential quotient, derivative” without addressing the limit. Often these “jumpers” stay in one column for some time, where they vertically connect verbal terms, followed up by a jump to another column, where verbal terms are linked. Examples can be seen in Oliver’s analysis sheet and in Fig. 7 (in the middle).
・跳跃:列与列之间的较大移动在分析表上表现为 “跳跃”。大多数跳跃出现在 “函数,函数值” 列和 “导商,导数” 列之间,其他跳跃出现在 “差商” 列和 “导商,导数” 列之间,而没有涉及极限。通常,这些 “跳跃者” 会在一个列中停留一段时间,在那里他们垂直连接口头术语,然后跳到另一个列,在那里连接口头术语。可以在 Oliver 的分析表和图 7(中间)中看到示例。
・Split up: Finally, there are students who frequently split the line of thought, which is represented in the analysis sheets by unconnected circles. Examples can be seen in Fig. 7 (in the middle), and in Fig. 6. Of course, it is possible, that these students would be able to connect the different lines of thought if asked to. However, in my opinion, the very fact that they do not implement it in their imaginary dialogue shows a weaker connection than if they established the connections themselves.
・分裂:最后,有些学生经常分裂思维路径,这在分析表中表现为不相连的圆圈。可以在图 7(中间)和图 6 中看到示例。当然,如果被要求,这些学生可能能够连接不同的思维路径。然而,在我看来,他们没有在自己的虚构对话中实现这一点这一事实表明,他们的联系比他们自己建立联系要弱。
A Response to RQ 1: Differences Regarding the Analysis Table
对研究问题 1 的回应:分析表上的差异
The analysis tables display the split ups as in the analysis sheets, here, as multiple tables for one student. They also display whether a student uses diagrams, which representational systems they belong to, algebraic-analytical or geometric-graphical, and whether the diagrams are connected by diagrammatic activity. Moreover, the use of application-based terms can be seen. In the entire class, there is a wide range of different use of diagrams: Some students connect diagrams with denotations by writing diagrams without acting with them (see Fig. 8), some students connect diagrams vertically by explaining their correspondence in different representational systems (see Peter’s imaginary dialogue and analysis tables), and some students use diagrammatic activity in order to horizontally connect diagrams and their denotations (see Jakob’s analysis table).
分析表显示了与分析表相同的分裂情况,这里是一个学生的多个表。它们还显示了一个学生是否使用图表,这些图表属于哪个表示系统,是代数分析型还是几何图形型,以及这些图表是否通过图表活动连接。此外,还可以看到应用型术语的使用。在整个班级中,图表的使用范围很广:有些学生通过写出图表而不对其操作来将图表与术语连接起来(见图 8),有些学生通过解释不同表示系统中图表的对应关系来垂直连接图表(见 Peter 的虚构对话和分析表),有些学生通过图表活动来水平连接图表及其术语(见 Jakob 的分析表)。
Fig. 8 The analysis table of a student
In particular, concerning the use of diagrammatic activity to horizontally link diagrams, there are those students who only link concrete functions with their derivative with the help of derivation rules and those who connect more “steps in between”, like Jakob.
特别是,关于使用图表活动来水平连接图表,有些学生只通过求导规则将具体函数与其导数连接起来,而有些学生则连接了更多的 “中间步骤”,就像 Jakob 一样。
Differences in Relation to the Mathematics Grade Achieved in the Previous Year
与上一年数学成绩相关的差异
Because of the small number of students, the differences listed here are only seen as an indication of how high-, average-, and low-achieving students may connect verbal terms and diagrams in this context. Of the total of 20 students, four students achieved a high grade for mathematics in the previous year’s certificate, eleven achieved an average grade and six a low grade. These groups are referred to as high, average, and low achievers in what follows. Concerning the movements in the analysis sheets (in relation to RQ 2), the high-achieving students jump less often between columns and have fewer split ups in their line of thought. They rather make small movements between columns like a walk on the analysis sheet. In contrast, the average achievers jump more frequently and the low achievers even more frequently than the high achievers. Less frequently, a walking style can be found in these two groups. In addition, split ups are more common among the weaker students: None of the high achievers splits up their line of thought on paper. In contrast, almost 40% of the average achievers and a little over 80% of the low achievers have at least one split up. Differences can also be found when looking at the use of diagrams and diagrammatic activity. The median of the ratio of shaded circles and squares to all circles and squares is 76% for the high achievers, 44% for the average achievers, and 38% for the low achievers. Differences in the average are about the same. More distinct is the difference in the ratio of solid lines to all lines: the median for high achievers is 63%, for average achievers 15%, and for low achievers 8%. Here, the average does not show such clear differences as the median: the ratio is 64% for high achievers, 18% for average achievers, but 29% for low achievers. The reason for the difference of the median and the average is the imaginary dialogue of one low-achieving student who uses diagrams and diagrammatic manipulations at every point (see Fig. 7 on the right) in contrast to the other low achievers. Thus, in terms of the occurrence of diagrams and diagrammatic activity there is no difference between this student and the higher achievers. In this case, however, it becomes clear how much the line of thought jumps back and forth between the column “function, value of function” and “differential quotient, derivative”. At this point it can be seen that one criterion such as the use of diagrams is not sufficient to clearly distinguish between the different groups. However, overall, it can be said that the high achievers use diagrams more frequently, and above all, they act with diagrams considerably more frequently than the average achievers. Moreover, except for this one student, the same difference can be observed between average and low achievers. Regarding the analysis table that focuses more on RQ 1, the clearest difference can be seen between the number of (diagrammatical) connections in the tables: The high-achieving students establish an average of 4.3 connections, the average-achieving students 2.1 connections and the low-achieving students 1.2 connections. Altogether, most of the connections are horizontal, fewer are identity connections (i.e. when two diagrams of the same column are connected diagrammatically) and only a few are vertical. With regard to the ratio of shaded to non-shaded circles or squares in the tables, there are hardly any differences between the three groups in the tables. The average of this ratio is 77%, 60%, and 68% for the three groups, starting with the high-achieving students (the median is: 80%, 67%, and 68%). Similarly, there is no distinct difference between the occurrence of algebraic-analytical, geometric-graphical and application-based terms or diagrams. Here, it is the case that the average- and low-achieving students speak a little more about geometric-graphical or application-based terms than the high-achieving students, who mainly argue algebraic-analytical.
由于学生人数较少,这里列出的差异仅被视为高、中、低成绩学生在这种情况下,可能如何连接口头术语和图表的指示。在总共 20 名学生中,有 4 名学生在上一年的证书中数学成绩优异,11 名学生成绩中等,6 名学生成绩较差。这些组别在下文中分别被称为高、中、低成就者。关于分析表中的移动(与研究问题 2 相关),高成就者学生在列之间跳跃的频率较低,他们的思维路径中分裂的情况也较少。他们更倾向于在列之间进行小步移动,就像在分析表上行走一样。相比之下,中等成就者学生跳跃的频率更高,而低成就者学生比高成就者学生跳跃的频率更高。在后两组中,行走风格的情况较少。此外,分裂在较弱的学生中更为常见:没有高成就者学生在纸上分裂他们的思维路径。相比之下,近 40% 的中等成就者学生和超过 80% 的低成就者学生至少有一个分裂。当查看图表和图表活动的使用情况时,也可以发现差异。在所有圆圈和正方形中,涂黑的圆圈和正方形的比例的中位数,对于高成就者学生为 76%,中等成就者学生为 44%,低成就者学生为 38%。平均值的差异大致相同。更明显的是实线与所有线条的比例差异:高成就者学生的中位数为 63%,中等成就者学生为 15%,低成就者学生为 8%。在这里,平均值没有像中位数那样显示出如此明显的差异:高成就者学生的比例为 64%,中等成就者学生为 18%,但低成就者学生为 29%。中位数和平均值之间的差异的原因是,一名低成就者学生在虚构对话中在每个点上都使用图表和图表操作(见图 7 右侧),与其他低成就者学生形成对比。因此,在图表和图表活动的发生方面,这名学生与其他高成就者学生之间没有差异。然而,在这种情况下,可以清楚地看到思维路径在 “函数,函数值” 列和 “导商,导数” 列之间来回跳跃。这一点表明,仅使用图表这一标准不足以明确区分不同的组别。不过,总体而言,可以认为高成就者学生更频繁地使用图表,更重要的是,他们比中等成就者学生更频繁地进行图表操作。此外,除了这名学生之外,在中等和低成就者学生之间也观察到了同样的差异。关于更关注研究问题 1 的分析表,最明显的差异在于表中的(图表)连接数量:高成就者学生平均建立了 4.3 个连接,中等成就者学生建立了 2.1 个连接,低成就者学生建立了 1.2 个连接。总的来说,大多数连接是水平的,较少的是同一列中两个图表的连接(即,当同一列中的两个图表通过图表活动连接时),只有少数是垂直的。在表中涂黑与未涂黑的圆圈或正方形的比例方面,三个组之间几乎没有差异。这个比例的平均值分别为 77%、60% 和 68%,从高成就者学生开始(中位数分别为:80%、67% 和 68%)。同样,在代数分析型、几何图形型和应用型术语或图表的出现方面,也没有明显的差异。在这里,中等和低成就者学生比高成就者学生更多地谈论几何图形型或应用型术语,而高成就者学生主要进行代数分析型论证。
Discussion
讨论
Previous works on learning differentiation have often concentrated on the students’ conceptions (e.g. Zandieh (2000) findings about pseudo-objects). An additional perspective is provided by the approach presented here, which focuses on the students’ sign activity and speaking about it as displayed in the students’ writings. In this way, further effects on the learning process can be discussed that result from the differences observed in the students’ lines of thought seen on paper, their diagrammatic activity, and how they speak about acting with diagrams.
以往关于学习微分的研究通常集中在学生的概念上(例如,Zandieh(2000)关于伪对象的研究)。本文介绍的方法提供了另一种视角,它关注学生在写作中展示的符号活动以及他们对这种活动的讨论。通过这种方式,可以进一步讨论学习过程中产生的影响,这些影响源于观察到的学生在纸上展示的思维路径、他们的图表活动以及他们如何谈论图表操作的差异。
Consequences of the Way of Intertwining Diagram Activity and Speaking About It
图表活动与对其讨论的交织方式的后果
As seen above, the weaker students in particular acted with diagrams less frequently than the stronger students. This raises the question of what the consequences are for such students. In the framework outlined above, the meaning of a mathematical sign arises from its use within the sign game. Therefore, without sufficient activity with diagrams meaning cannot be grasped. One example can be found in Oliver’s dialogue: since he does not act diagrammatically to get from
f
(
x
0
+
h
)
−
f
(
x
0
)
h
\frac {f (x_0 + h) - f (x_0)}{h}
hf(x0+h)−f(x0) to
lim
h
→
0
f
(
x
0
+
h
)
−
f
(
x
0
)
h
\lim_{h \to 0} \frac {f (x_0 + h) - f (x_0)}{h}
limh→0hf(x0+h)−f(x0), in contrast to Jakob, Oliver can only speak about the limit superficially, saying: “That has something to do with the limit.” Another example can be found in Peter’s imaginary dialogue, when he compares diagrams without referring to their diagrammatical connections. Therefore, Peter cannot address their meaning, which arises precisely through the activity with diagrams. Furthermore, the examples of Katharina’s and Maria’s problems with the limit showed that the use of diagrams does not always mean that the speaking about denotations will be correct. A possible explanation for difficulties with the limit could be the theoretical considerations that have been made above about denotations, interpretations, and diagrammatizations: As discussed previously, the step from
f
(
x
+
h
)
−
f
(
x
)
h
\frac {f (x + h) - f (x)}{h}
hf(x+h)−f(x) to
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
\lim_{h \to 0} \frac {f (x + h) - f (x)}{h}
limh→0hf(x+h)−f(x) requires a reflow from speaking about diagrams to diagrammatic activity, because of the phrase “for all
ε
>
0
\varepsilon > 0
ε>0 with
ε
∈
R
\varepsilon \in \mathbb {R}
ε∈R” in the definition of the limit of a function. Hence, one has to accept an interpretation in order to get to
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
\lim_{h \to 0} \frac {f (x + h) - f (x)}{h}
limh→0hf(x+h)−f(x) and, in particular, it is not sufficient to only follow a line of diagrammatic activity. This shows how difficult it is for students to grasp the meaning of the limit. If one understands the meaning as its sign use, but the student’s sign use is limited (for example if the limit is only used as a late substituting) and diagrammatizations of interpretations are included, the meaning cannot be fully comprehended. The difficulty for students here lies within the complex intertwining of diagrammatical activity and speaking about it.
如上所述,较弱的学生尤其比较强的学生更不频繁地使用图表。这引发了对这些学生的影响的问题。在上述框架中,数学符号的意义来自于其在符号游戏中的使用。因此,如果没有足够的图表活动,就无法把握意义。一个例子可以在 Oliver 的对话中找到:由于他没有像 Jakob 那样通过图表活动从
f
(
x
0
+
h
)
−
f
(
x
0
)
h
\frac {f (x_0 + h) - f (x_0)}{h}
hf(x0+h)−f(x0) 到
lim
h
→
0
f
(
x
0
+
h
)
−
f
(
x
0
)
h
\lim_{h \to 0} \frac {f (x_0 + h) - f (x_0)}{h}
limh→0hf(x0+h)−f(x0) 进行转换,因此 Oliver 只能肤浅地谈论极限,说:“这与极限有关。” 另一个例子可以在 Peter 的虚构对话中找到,当他比较图表时没有提到它们的图表式联系。因此,Peter 无法涉及它们的意义,而这种意义正是通过图表活动产生的。此外,Katharina 和 Maria 在极限方面遇到的问题的例子表明,使用图表并不总是意味着对术语的讨论将是正确的。对极限困难的一种可能解释是上述关于术语、解释和图表化的理论考虑:如前所述,从
f
(
x
+
h
)
−
f
(
x
)
h
\frac {f (x + h) - f (x)}{h}
hf(x+h)−f(x) 到
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
\lim_{h \to 0} \frac {f (x + h) - f (x)}{h}
limh→0hf(x+h)−f(x) 的步骤需要从对图表的讨论转向图表活动,这是由于函数极限定义中的 “对于所有
ε
>
0
\varepsilon > 0
ε>0,
ε
∈
R
\varepsilon \in \mathbb {R}
ε∈R” 这一短语。因此,为了达到
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
\lim_{h \to 0} \frac {f (x + h) - f (x)}{h}
limh→0hf(x+h)−f(x),必须接受一种解释,特别是仅仅遵循图表活动的路径是不够的。这显示了学生理解极限意义的困难。如果将意义理解为其符号使用,但学生的符号使用是有限的(例如,如果极限仅被用作后期替换),并且包括解释的图表化,那么意义就无法完全理解。学生在这里的困难在于图表活动和对其讨论的复杂交织。
Conclusion
结论
From the viewpoint of a framework based on Wittgenstein and Peirce where diagram activity and speaking about it are both inevitable and central to mathematical activity, the intertwining of the two becomes the focus. For a student, in order to progressively learn about the meaning of mathematical diagrams and their denotations it means that he or she needs numerous experiences both in diagram activity and speaking about it. The analyzing method presented in this article can be a tool to display this intertwining. For the topic of “derivative”, regarding RQ 1, it became apparent from the analysis tables which connections are actually made by speaking about diagram activity and which by the diagram activity itself. Additionally, regarding RQ 2, the different types of movement, walk, jump, and split up became apparent with the help of the analysis sheets. In the light of the framework presented here, understanding mathematics means that a student learns more and more about the rules of the “game” and how they can be derived from other rules, thus, how diagrams and propositions about diagrams are connected. This requires both diagram activity and speaking about diagram activity. Furthermore, a student can better comprehend the meaning of a diagram the more experience he or she has with extensive diagrammatical use, possibly in different representational systems. In particular, speaking about diagrams is needed to formulate properties and theorems, but it cannot replace diagrammatic activity and there is a risk that speaking about diagrams might be detached from the diagram activity itself. In cases that include diagrammatizations of interpretations, a student’s diagram activity and his or her speaking about this activity should be taken into consideration when evaluating the student’s mathematical understanding. In the examples outlined here this concerned the limit. What does this mean in terms of the findings of the case study? It was shown that the lower achievers in particular acted diagrammatically less frequently and when they did, they mainly used derivation rules without the steps in between, specifically, they jumped more often or had more split ups. This means, in order to support these students, it is not enough to show them horizontal and vertical connections only by talking about them. Instead, they must be offered a variety of learning opportunities where they can both be diagrammatically active and express this in language. In particular, not only should connections between a function and its derivative be diagrammatically established, but also the “steps in between”.
从维特根斯坦和皮尔斯的框架出发,图表活动和对其讨论都是不可避免的,也是数学活动的核心,两者的交织成为焦点。对于学生来说,为了逐步学习数学图表及其术语的意义,意味着他或她需要在图表活动和讨论图表活动方面都有丰富的经验。本文介绍的分析方法可以作为一种工具来展示这种交织。对于 “导数” 这一主题,就研究问题 1 而言,从分析表中可以看出,哪些联系是通过讨论图表活动建立的,哪些是通过图表活动本身建立的。此外,就研究问题 2 而言,借助分析表,可以看出不同的移动类型,即行走、跳跃和分裂。在本文介绍的框架下,理解数学意味着学生逐渐学习 “游戏” 的规则以及如何从其他规则中推导出这些规则,即图表和关于图表的命题是如何连接的。这需要图表活动和对图表活动的讨论。此外,学生对图表的意义理解得越好,他在不同表示系统中广泛使用图表的经验就越丰富。特别是,讨论图表是制定属性和定理所必需的,但它不能替代图表活动,而且存在一种风险,即讨论图表可能会与图表活动本身脱节。在包括解释的图表化的案例中,评估学生的数学理解时,应该考虑学生的图表活动以及他对这种活动的讨论。在本文介绍的案例研究中,这涉及到了极限。这对案例研究的发现意味着什么?研究表明,低成就者尤其较少进行图表活动,当他们进行图表活动时,他们主要使用求导规则而没有中间步骤,具体来说,他们跳跃得更频繁或有更多的分裂。这意味着,为了支持这些学生,仅仅通过讨论向他们展示水平和垂直连接是不够的。相反,必须为他们提供多种学习机会,让他们既能进行图表活动,又能用语言表达这种活动。特别是,不仅要图表式地建立函数与其导数之间的联系,还要建立 “中间步骤”。
Furthermore, in order to study the students’ understanding both how they speak about the denotations and how they act diagrammatically are worth investigating, especially in cases where diagrammatizations of interpretations are involved. The method presented here is one way in which this could be done.
此外,为了研究学生对术语的讨论以及他们如何进行图表操作的理解,值得调查,特别是在涉及解释的图表化的情况下。这里提出的方法是实现这一点的一种方式。
Funding Information Open access funding provided by University of Klagenfurt.
资助信息 由克拉根福特大学提供开放获取资金。
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
开放获取 本文在Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)条款下发布,该许可允许在任何媒介中无限制地使用、分发和复制,前提是你给予原作者和来源适当的致谢,提供指向Creative Commons许可的链接,并注明是否进行了更改。
References
- Danckwerts, R., & Vogel, D. (2006). Analysis verst**andlich unterrichten [Teaching analysis in a comprehensible way]. München: Spektrum Akademischer Verlag.
- Dörfler, W. (2005). Diagrammatic thinking. Affordances and constraints. In Hoffmann, M.H.G., Lenhard, J., Seeger, F. (Eds.) Activity and sign. Grounding Mathematics Education (pp. 57–66). New York, NY: Springer.
- Dörfler, W. (2006). Diagramme und Mathematikunterricht [Diagrams and teaching mathematics]. Journal für Mathematik-Didaktik, 27(3–4), 200–219. https://doi.org/10.1007/BF03339039
- Dörfler, W. (2008). Mathematical reasoning: Mental activity or practice with diagrams. In Niss, M. (Ed.) ICME 10 Proceedings, Regular Lectures, CD-Rom (p. 17). Roskilde, Denmark: Roskilde University and IMFUFA.
- Dörfler, W. (2016). Signs and their use: Peirce and Wittgenstein. In Bikner-Ahsbahs, A., Vohns, A., Schmitt, O., Bruder, R., Dörfler, W. (Eds.) Theories in and of Mathematics Education. Theory Strands in German Speaking Countries (ICME 13 Topical Surveys) (pp. 21–31). Berlin: Springer.
- Duval, R. (2006). A cognitive analysis of problems of comprehension in the learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-0400-z
- Eisenman, P. (2008). Why is it not true that 0.999… < 1? The Teaching of Mathematics, 11(1), 35–40.
- Ferrini-Mundy, J., & Graham, K. (1991). An overview of the calculus curriculum reform effort: Issues for learning, teaching, and curriculum development. American Mathematical Monthly, 98(7), 627–636.
- Gray, E., & Tall, D. O. (1994). Duality, ambiguity, and flexibility: A “Proceptual” view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 116–140.
- Hoffmann, M. H. G. (2005a). Erkenntnisentwicklung. Ein semiotisch-pragmatischer Ansatz [Development of knowledge A semiotic-pragmatic approach]. Frankfurt am Main: Vittorio Klostermann GmbH.
- Hoffmann, M. H. G. (2005b). Signs as means for discovery. In Hoffmann, M.H.G., Lenhard, J., Seeger, F. (Eds.) Activity and sign. Grounding mathematics education (pp. 45–56). New York, NY: Springer.
- Hoffmann, M. H. G. (2007). Cognitive conditions of diagrammatic reasoning (Georgia Tech’s School of Public Policy Working Paper Series 24). Retrieved from http://works.bepress.com/michael hoffmann/1/
- Koch, P., & Österreicher, W. (2012). Language of immediacy – language of distance: Orality and literacy from the perspective of language theory and linguistic history. In Lange, C., Weber, B., Wolf, G. (Eds.) Communicative Spaces. Variation, Contact, and Change- Papers in Honour of Ursula Schaefer (pp. 441–473). Bern: Peter Lang.
- Monaghan, J. (2001). Young peoples’ ideas of infinity. Educational Studies in Mathematics, 48, 239–257. https://doi.org/10.1023/A:1016090925967
- Müller-Hill, E., & Wille, A. M. (2018). Negotiating mathematical meaning with oneself - snapshots from imaginary dialogues on recurring decimals. In Norén, E., Palmér, H., Cooke, A. (Eds.) Schriften från Svensk Förening för Matematikdidaktisk Forskning, No. 12, Nordic Research in Mathematics Education (pp. 69–77). Göteborg, Sweden: SMDF.
- Orton, A. A. (1983). Students’ understanding of differentiation. Educational Studies in Mathematics, 14(3), 235–250. https://doi.org/10.1007/BF010540
- Otte, M. F. (2011). Evolution, learning, and semiotics from a Peircean point of view. Educational Studies in Mathematics, 77, 313–329. https://doi.org/10.1007/s10649-011-9302-9
- Park, J. (2015). Is the derivative a function? If so, how do we teach it? Educational Studies in Mathematics, 89, 233–250.
- Peirce, (NEM) (1976). The New Elements of Mathematics by Charles S. Peirce. In Eisele, C. (Ed.), Vol. I-809 IV. The Hague-Paris/Atlantic Highlands, N.J.: Mouton/Humanities Press.
- Rasmussen, C., Marrongelle, K., Borba, M.C. (2014). Research on calculus: what do we know and where do we need to go?. ZDM Mathematics Education, 46, 507–515.
- Staats, S. K. (2008). Poetic lines in mathematics discourse: A method from linguistic anthropology. For the Learning of Mathematics, 28(2), 26–32.
- Tall, D. O., & Schwarzenberger, L. E. (1978). Conflicts in the learning of real numbers and limits. Mathematics Teaching, 82, 44–49.
- Thompson, P. W. (1994a). Images of rate and operational understanding of the Fundamental Theorem of Calculus. Educational Studies in Mathematics, 26(2–3), 229–274.
- Thompson, P. W. (1994b). Students, functions, and the undergraduate curriculum. In Dubinsky, E., Schoenfeld, A.H., Kaput, J.J. (Eds.) Research in collegiate mathematics education, 1, Issues in Mathematics Education, (Vol. 4 pp. 21–44). Providence, RI: American Mathematical Society.
- Vygotsky, L. S. (1986). Thought and language (A. Kozulin, Trans. and Ed.) Cambridge: M.I.T. Press.
- Weigand, H.-G. (2014). A discrete approach to the concept of derivative. ZDM Mathematics Education, 46, 603–619.
- Wille, A. M. (2008). Aspects of the concept of a variable in imaginary dialogues written by students. In Figueras, O., Cortina, J., Alatorre, S., Rojano, T., Sepúlveda, A. (Eds.) Proceedings of the 32nd Conference of the International Group for the Psychology of Mathematics Education (PME32), (Vol. 4 pp. 417–424). Mexico: CINVESTAV and PME.
- Wille, A. M. (2017a). Imaginary Dialogues in Mathematics Education. Journal für Mathematik-Didaktik, 38(1), 29–55.
- Wille, A. M. (2017b). Conceptions of the transition from the difference quotient to the derivative in imaginary dialogues written by preservice teachers. In Dooley, T., & Gueudet, G. (Eds.) Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME10, February 1 – 5, 2017, pp. 1396–1403). Dublin, Ireland: DCU Institute of Education and ERME.
- Wittgenstein, L. (1999). (PI). Philosophical investigations (second edition) (G. E. M. Anscombe, Trans.) Oxford/Malden: Blackwell Publishers Ltd.
- Wittgenstein, L. (1967). (RFM). Remarks on the foundation of mathematics. (G. H. Wright, R. Rhees, G. E. M. Anscombe, Eds.) (G. E. M. Anscombe, Trans.) Cambridge: M.I.T. Press.
- Wittgenstein, L. (1979). Wittgenstein and the Vienna Circle: Conversations recorded by F. Waismann. In McGuinness, B. (Ed.) New York: Barnes & Noble.
- Wrigley, M. (1977). Wittgenstein’s philosophy of mathematics. The Philosophical Quarterly (1950–), 27(106), 50–59.
- Zazkis, R., Liljedahl, P., Sinclair, N. (2013). Lesson play in mathematics education. A tool for research and professional development. New York, NY: Springer.
via:
-
A semiotic interpretation of the derivative concept in a textbook | ZDM – Mathematics Education
https://link.springer.com/article/10.1007/s11858-018-0975-8 -
Activity with Signs and Speaking About It: Exploring Students’ Mathematical Lines of Thought Regarding the Derivative | International Journal of Science and Mathematics Education
https://link.springer.com/article/10.1007/s10763-019-10024-1 -
Analyzing the written discourse in calculus textbooks over 42 years: the case of primary objects, concrete discursive objects, and a realization tree of the derivative at a point | Educational Studies in Mathematics
https://link.springer.com/article/10.1007/s10649-022-10168-y