三角函数公式 | 三角恒等式与魔法六边形

注:本文为“三角函数公式”相关文章合辑。

图片清晰度受引文原图所限。
英文引文,机翻未校。
中文引文,略作重排。
未整理去重,如有内容异常,请看原文。


三角函数公式总结

一、诱导公式

诱导公式用于将任意角的三角函数转化为锐角三角函数,核心规律为 “奇变偶不变,符号看象限” k ∈ Z k \in \mathbb{Z} kZ)。

1. 终边相同的角(公式一)

α \alpha α 为任意角,终边相同的角的同一三角函数值相等:
sin ⁡ ( 2 k π + α ) = sin ⁡ α cos ⁡ ( 2 k π + α ) = cos ⁡ α tan ⁡ ( 2 k π + α ) = tan ⁡ α cot ⁡ ( 2 k π + α ) = cot ⁡ α \begin{align*} \sin(2k\pi + \alpha) &= \sin\alpha \\ \cos(2k\pi + \alpha) &= \cos\alpha \\ \tan(2k\pi + \alpha) &= \tan\alpha \\ \cot(2k\pi + \alpha) &= \cot\alpha \end{align*} sin(2+α)cos(2+α)tan(2+α)cot(2+α)=sinα=cosα=tanα=cotα

2. π ± α \pi \pm \alpha π±α 的三角函数值(公式二、四)

  • π + α \pi + \alpha π+α
    sin ⁡ ( π + α ) = − sin ⁡ α cos ⁡ ( π + α ) = − cos ⁡ α tan ⁡ ( π + α ) = tan ⁡ α cot ⁡ ( π + α ) = cot ⁡ α \begin{align*} \sin(\pi + \alpha) &= -\sin\alpha \\ \cos(\pi + \alpha) &= -\cos\alpha \\ \tan(\pi + \alpha) &= \tan\alpha \\ \cot(\pi + \alpha) &= \cot\alpha \end{align*} sin(π+α)cos(π+α)tan(π+α)cot(π+α)=sinα=cosα=tanα=cotα
  • π − α \pi - \alpha πα
    sin ⁡ ( π − α ) = sin ⁡ α cos ⁡ ( π − α ) = − cos ⁡ α tan ⁡ ( π − α ) = − tan ⁡ α cot ⁡ ( π − α ) = − cot ⁡ α \begin{align*} \sin(\pi - \alpha) &= \sin\alpha \\ \cos(\pi - \alpha) &= -\cos\alpha \\ \tan(\pi - \alpha) &= -\tan\alpha \\ \cot(\pi - \alpha) &= -\cot\alpha \end{align*} sin(πα)cos(πα)tan(πα)cot(πα)=sinα=cosα=tanα=cotα

3. − α -\alpha α 2 π − α 2\pi - \alpha 2πα 的三角函数值(公式三、五)

  • − α -\alpha α
    sin ⁡ ( − α ) = − sin ⁡ α cos ⁡ ( − α ) = cos ⁡ α tan ⁡ ( − α ) = − tan ⁡ α cot ⁡ ( − α ) = − cot ⁡ α \begin{align*} \sin(-\alpha) &= -\sin\alpha \\ \cos(-\alpha) &= \cos\alpha \\ \tan(-\alpha) &= -\tan\alpha \\ \cot(-\alpha) &= -\cot\alpha \end{align*} sin(α)cos(α)tan(α)cot(α)=sinα=cosα=tanα=cotα
  • 2 π − α 2\pi - \alpha 2πα(利用公式一和公式三):
    sin ⁡ ( 2 π − α ) = − sin ⁡ α cos ⁡ ( 2 π − α ) = cos ⁡ α tan ⁡ ( 2 π − α ) = − tan ⁡ α cot ⁡ ( 2 π − α ) = − cot ⁡ α \begin{align*} \sin(2\pi - \alpha) &= -\sin\alpha \\ \cos(2\pi - \alpha) &= \cos\alpha \\ \tan(2\pi - \alpha) &= -\tan\alpha \\ \cot(2\pi - \alpha) &= -\cot\alpha \end{align*} sin(2πα)cos(2πα)tan(2πα)cot(2πα)=sinα=cosα=tanα=cotα

4. π 2 ± α \frac{\pi}{2} \pm \alpha 2π±α 3 π 2 ± α \frac{3\pi}{2} \pm \alpha 23π±α 的三角函数值(公式六)

  • π 2 + α \frac{\pi}{2} + \alpha 2π+α
    sin ⁡ ( π 2 + α ) = cos ⁡ α cos ⁡ ( π 2 + α ) = − sin ⁡ α tan ⁡ ( π 2 + α ) = − cot ⁡ α cot ⁡ ( π 2 + α ) = − tan ⁡ α \begin{align*} \sin\left(\frac{\pi}{2} + \alpha\right) &= \cos\alpha \\ \cos\left(\frac{\pi}{2} + \alpha\right) &= -\sin\alpha \\ \tan\left(\frac{\pi}{2} + \alpha\right) &= -\cot\alpha \\ \cot\left(\frac{\pi}{2} + \alpha\right) &= -\tan\alpha \end{align*} sin(2π+α)cos(2π+α)tan(2π+α)cot(2π+α)=cosα=sinα=cotα=tanα
  • π 2 − α \frac{\pi}{2} - \alpha 2πα
    sin ⁡ ( π 2 − α ) = cos ⁡ α cos ⁡ ( π 2 − α ) = sin ⁡ α tan ⁡ ( π 2 − α ) = cot ⁡ α cot ⁡ ( π 2 − α ) = tan ⁡ α \begin{align*} \sin\left(\frac{\pi}{2} - \alpha\right) &= \cos\alpha \\ \cos\left(\frac{\pi}{2} - \alpha\right) &= \sin\alpha \\ \tan\left(\frac{\pi}{2} - \alpha\right) &= \cot\alpha \\ \cot\left(\frac{\pi}{2} - \alpha\right) &= \tan\alpha \end{align*} sin(2πα)cos(2πα)tan(2πα)cot(2πα)=cosα=sinα=cotα=tanα
  • 3 π 2 + α \frac{3\pi}{2} + \alpha 23π+α
    sin ⁡ ( 3 π 2 + α ) = − cos ⁡ α cos ⁡ ( 3 π 2 + α ) = − sin ⁡ α tan ⁡ ( 3 π 2 + α ) = − cot ⁡ α cot ⁡ ( 3 π 2 + α ) = − tan ⁡ α \begin{align*} \sin\left(\frac{3\pi}{2} + \alpha\right) &= -\cos\alpha \\ \cos\left(\frac{3\pi}{2} + \alpha\right) &= -\sin\alpha \\ \tan\left(\frac{3\pi}{2} + \alpha\right) &= -\cot\alpha \\ \cot\left(\frac{3\pi}{2} + \alpha\right) &= -\tan\alpha \end{align*} sin(23π+α)cos(23π+α)tan(23π+α)cot(23π+α)=cosα=sinα=cotα=tanα
  • 3 π 2 − α \frac{3\pi}{2} - \alpha 23πα
    sin ⁡ ( 3 π 2 − α ) = − cos ⁡ α cos ⁡ ( 3 π 2 − α ) = − sin ⁡ α tan ⁡ ( 3 π 2 − α ) = cot ⁡ α cot ⁡ ( 3 π 2 − α ) = tan ⁡ α \begin{align*} \sin\left(\frac{3\pi}{2} - \alpha\right) &= -\cos\alpha \\ \cos\left(\frac{3\pi}{2} - \alpha\right) &= -\sin\alpha \\ \tan\left(\frac{3\pi}{2} - \alpha\right) &= \cot\alpha \\ \cot\left(\frac{3\pi}{2} - \alpha\right) &= \tan\alpha \end{align*} sin(23πα)cos(23πα)tan(23πα)cot(23πα)=cosα=sinα=cotα=tanα

记忆口诀

  • 奇变偶不变:当 k k k 为奇数时,函数名变为余函数(如 sin ⁡ → cos ⁡ \sin \to \cos sincos);当 k k k 为偶数时,函数名不变。
  • 符号看象限:将 α \alpha α 视为锐角,原函数在对应象限的符号即为结果符号。

二、同角三角函数基本关系

1. 倒数关系

tan ⁡ α ⋅ cot ⁡ α = 1 sin ⁡ α ⋅ csc ⁡ α = 1 cos ⁡ α ⋅ sec ⁡ α = 1 \begin{align*} \tan\alpha \cdot \cot\alpha &= 1 \\ \sin\alpha \cdot \csc\alpha &= 1 \\ \cos\alpha \cdot \sec\alpha &= 1 \end{align*} tanαcotαsinαcscαcosαsecα=1=1=1

2. 商数关系

sin ⁡ α cos ⁡ α = tan ⁡ α = sec ⁡ α csc ⁡ α cos ⁡ α sin ⁡ α = cot ⁡ α = csc ⁡ α sec ⁡ α \begin{align*} \frac{\sin\alpha}{\cos\alpha} &= \tan\alpha = \frac{\sec\alpha}{\csc\alpha} \\ \frac{\cos\alpha}{\sin\alpha} &= \cot\alpha = \frac{\csc\alpha}{\sec\alpha} \end{align*} cosαsinαsinαcosα=tanα=cscαsecα=cotα=secαcscα

3. 平方关系

sin ⁡ 2 α + cos ⁡ 2 α = 1 1 + tan ⁡ 2 α = sec ⁡ 2 α 1 + cot ⁡ 2 α = csc ⁡ 2 α \begin{align*} \sin^2\alpha + \cos^2\alpha &= 1 \\ 1 + \tan^2\alpha &= \sec^2\alpha \\ 1 + \cot^2\alpha &= \csc^2\alpha \end{align*} sin2α+cos2α1+tan2α1+cot2α=1=sec2α=csc2α

六角形记忆法

构造正六边形模型(上弦、中切、下割;左正、右余、中间 1 1 1):

  • 倒数关系:对角线上两函数互为倒数。
  • 商数关系:任一顶点函数值等于相邻两顶点函数值的乘积。
  • 平方关系:阴影三角形中,上两顶点函数值的平方和等于下顶点函数值的平方。

三、两角和差公式

1. 两角和与差的正弦、余弦、正切

sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β tan ⁡ ( α + β ) = tan ⁡ α + tan ⁡ β 1 − tan ⁡ α tan ⁡ β tan ⁡ ( α − β ) = tan ⁡ α − tan ⁡ β 1 + tan ⁡ α tan ⁡ β \begin{align*} \sin(\alpha + \beta) &= \sin\alpha\cos\beta + \cos\alpha\sin\beta \\ \sin(\alpha - \beta) &= \sin\alpha\cos\beta - \cos\alpha\sin\beta \\ \cos(\alpha + \beta) &= \cos\alpha\cos\beta - \sin\alpha\sin\beta \\ \cos(\alpha - \beta) &= \cos\alpha\cos\beta + \sin\alpha\sin\beta \\ \tan(\alpha + \beta) &= \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta} \\ \tan(\alpha - \beta) &= \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha\tan\beta} \end{align*} sin(α+β)sin(αβ)cos(α+β)cos(αβ)tan(α+β)tan(αβ)=sinαcosβ+cosαsinβ=sinαcosβcosαsinβ=cosαcosβsinαsinβ=cosαcosβ+sinαsinβ=1tanαtanβtanα+tanβ=1+tanαtanβtanαtanβ

四、倍角公式

1. 二倍角公式(升幂缩角)

sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \begin{align*} \sin2\alpha &= 2\sin\alpha\cos\alpha \\ \cos2\alpha &= \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha \\ \tan2\alpha &= \frac{2\tan\alpha}{1 - \tan^2\alpha} \end{align*} sin2αcos2αtan2α=2sinαcosα=cos2αsin2α=2cos2α1=12sin2α=1tan2α2tanα

2. 半角公式(降幂扩角)

sin ⁡ 2 α 2 = 1 − cos ⁡ α 2 cos ⁡ 2 α 2 = 1 + cos ⁡ α 2 tan ⁡ 2 α 2 = 1 − cos ⁡ α 1 + cos ⁡ α tan ⁡ α 2 = 1 − cos ⁡ α sin ⁡ α = sin ⁡ α 1 + cos ⁡ α \begin{align*} \sin^2\frac{\alpha}{2} &= \frac{1 - \cos\alpha}{2} \\ \cos^2\frac{\alpha}{2} &= \frac{1 + \cos\alpha}{2} \\ \tan^2\frac{\alpha}{2} &= \frac{1 - \cos\alpha}{1 + \cos\alpha} \\ \tan\frac{\alpha}{2} &= \frac{1 - \cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1 + \cos\alpha} \end{align*} sin22αcos22αtan22αtan2α=21cosα=21+cosα=1+cosα1cosα=sinα1cosα=1+cosαsinα

3. 万能公式

sin ⁡ α = 2 tan ⁡ α 2 1 + tan ⁡ 2 α 2 cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 tan ⁡ α = 2 tan ⁡ α 2 1 − tan ⁡ 2 α 2 \begin{align*} \sin\alpha &= \frac{2\tan\frac{\alpha}{2}}{1 + \tan^2\frac{\alpha}{2}} \\ \cos\alpha &= \frac{1 - \tan^2\frac{\alpha}{2}}{1 + \tan^2\frac{\alpha}{2}} \\ \tan\alpha &= \frac{2\tan\frac{\alpha}{2}}{1 - \tan^2\frac{\alpha}{2}} \end{align*} sinαcosαtanα=1+tan22α2tan2α=1+tan22α1tan22α=1tan22α2tan2α
推导思路:利用 sin ⁡ 2 α = 2 tan ⁡ α 1 + tan ⁡ 2 α \sin2\alpha = \frac{2\tan\alpha}{1 + \tan^2\alpha} sin2α=1+tan2α2tanα,将 α \alpha α 替换为 α 2 \frac{\alpha}{2} 2α 即可。

4. 三倍角公式

sin ⁡ 3 α = 3 sin ⁡ α − 4 sin ⁡ 3 α cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α tan ⁡ 3 α = 3 tan ⁡ α − tan ⁡ 3 α 1 − 3 tan ⁡ 2 α \begin{align*} \sin3\alpha &= 3\sin\alpha - 4\sin^3\alpha \\ \cos3\alpha &= 4\cos^3\alpha - 3\cos\alpha \\ \tan3\alpha &= \frac{3\tan\alpha - \tan^3\alpha}{1 - 3\tan^2\alpha} \end{align*} sin3αcos3αtan3α=3sinα4sin3α=4cos3α3cosα=13tan2α3tanαtan3α

五、和差化积与积化和差公式

1. 和差化积公式

sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \begin{align*} \sin\alpha + \sin\beta &= 2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2} \\ \sin\alpha - \sin\beta &= 2\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2} \\ \cos\alpha + \cos\beta &= 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2} \\ \cos\alpha - \cos\beta &= -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2} \end{align*} sinα+sinβsinαsinβcosα+cosβcosαcosβ=2sin2α+βcos2αβ=2cos2α+βsin2αβ=2cos2α+βcos2αβ=2sin2α+βsin2αβ

2. 积化和差公式

sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \begin{align*} \sin\alpha\cos\beta &= \frac{1}{2}[\sin(\alpha + \beta) + \sin(\alpha - \beta)] \\ \cos\alpha\sin\beta &= \frac{1}{2}[\sin(\alpha + \beta) - \sin(\alpha - \beta)] \\ \cos\alpha\cos\beta &= \frac{1}{2}[\cos(\alpha + \beta) + \cos(\alpha - \beta)] \\ \sin\alpha\sin\beta &= -\frac{1}{2}[\cos(\alpha + \beta) - \cos(\alpha - \beta)] \end{align*} sinαcosβcosαsinβcosαcosβsinαsinβ=21[sin(α+β)+sin(αβ)]=21[sin(α+β)sin(αβ)]=21[cos(α+β)+cos(αβ)]=21[cos(α+β)cos(αβ)]
推导技巧:通过 sin ⁡ ( a ± b ) \sin(a \pm b) sin(a±b) cos ⁡ ( a ± b ) \cos(a \pm b) cos(a±b) 的和差公式联立,再用 x = α + β x = \alpha + \beta x=α+β y = α − β y = \alpha - \beta y=αβ 换元得到。

六、三角函数在各象限的符号

象限符号口诀

  • 第一象限:全正( sin ⁡ + , cos ⁡ + , tan ⁡ + , cot ⁡ + \sin+, \cos+, \tan+, \cot+ sin+,cos+,tan+,cot+
  • 第二象限:正弦正( sin ⁡ + , cos ⁡ − , tan ⁡ − , cot ⁡ − \sin+, \cos-, \tan-, \cot- sin+,cos,tan,cot
  • 第三象限:切函数正( sin ⁡ − , cos ⁡ − , tan ⁡ + , cot ⁡ + \sin-, \cos-, \tan+, \cot+ sin,cos,tan+,cot+
  • 第四象限:余弦正( sin ⁡ − , cos ⁡ + , tan ⁡ − , cot ⁡ − \sin-, \cos+, \tan-, \cot- sin,cos+,tan,cot

符号表格

函数第一象限第二象限第三象限第四象限
sin ⁡ \sin sin + + + + + + − - − -
cos ⁡ \cos cos + + + − - − - + + +
tan ⁡ \tan tan + + + − - + + + − -
cot ⁡ \cot cot + + + − - + + + − -

用魔法六边形巧记三角恒等式

lvximing 发布于 2023-04-30 11:42・内蒙古

在这里插入图片描述[.](https://i-blog.csdnimg.cn/img_convert/d8ce1855695809ec2067e7985e4338e7.png =700x)

本文将介绍一种借助“上弦、中切、下割;左正、右余、中间 1”的魔法六边形记忆三角恒等式的方法与技巧。

魔法六边形记忆法要点包括:

  • 对角线上两个顶点的函数值互为倒数
  • 倒三角中两上端点平方和等于下端点平方
  • 任意一顶点的三角函数值等于与该点相邻的两个端点的三角函数值的乘积

这种记忆法可以帮助学生更好地理解和记忆三角函数恒等式,并提高学习效率。

1. 魔法六边形概述

1.1 魔法六边形简介

魔法六边形记忆法(Mnemonics in trigonometry)是一种通过六边形进行记忆三角函数运算规则的方法。其特征为“上弦中切下割,左正右余 1 中间”。

在这里插入图片描述

1.2 魔法六边形要义

  • 对角线:对角线上两个顶点的函数值互为倒数;
  • 倒三角:倒三角中两上端点平方和等于下端点平方;
  • 邻点积:任意一顶点的三角函数值等于与该点相邻的两个端点的三角函数值的乘积。

2. 巧记三角恒等式

2.1 积型恒等式

在这里插入图片描述

2.1.1 对角线乘积 = 1

sin ⁡ ( x ) csc ⁡ ( x ) = 1 \sin(x) \csc(x) = 1 sin(x)csc(x)=1

cos ⁡ ( x ) sec ⁡ ( x ) = 1 \cos(x) \sec(x) = 1 cos(x)sec(x)=1

cot ⁡ ( x ) tan ⁡ ( x ) = 1 \cot(x) \tan(x) = 1 cot(x)tan(x)=1

csc ⁡ ( x ) sin ⁡ ( x ) = 1 \csc(x) \sin(x) = 1 csc(x)sin(x)=1

sec ⁡ ( x ) cos ⁡ ( x ) = 1 \sec(x) \cos(x) = 1 sec(x)cos(x)=1

tan ⁡ ( x ) cot ⁡ ( x ) = 1 \tan(x) \cot(x) = 1 tan(x)cot(x)=1

2.1.2 中间顶点等于两边顶点的积

tan ⁡ x = sin ⁡ x sec ⁡ x \tan x = \sin x \sec x tanx=sinxsecx

sin ⁡ x = cos ⁡ x tan ⁡ x \sin x = \cos x \tan x sinx=cosxtanx

cos ⁡ x = sin ⁡ x cot ⁡ x \cos x = \sin x \cot x cosx=sinxcotx

cot ⁡ x = cos ⁡ x csc ⁡ x \cot x = \cos x \csc x cotx=cosxcscx

csc ⁡ x = cot ⁡ x sec ⁡ x \csc x = \cot x \sec x cscx=cotxsecx

sec ⁡ x = csc ⁡ x tan ⁡ x \sec x = \csc x \tan x secx=cscxtanx

2.2 商型恒等式

在这里插入图片描述

2.2.1 顺时针:任意一点的值等于这一点顺时针的第一个值与第二个值的比值

tan ⁡ ( x ) = sin ⁡ ( x ) cos ⁡ ( x ) \tan(x) = \frac{\sin(x)}{\cos(x)} tan(x)=cos(x)sin(x)

sin ⁡ ( x ) = cos ⁡ ( x ) cot ⁡ ( x ) \sin(x) = \frac{\cos(x)}{\cot(x)} sin(x)=cot(x)cos(x)

cos ⁡ ( x ) = cot ⁡ ( x ) csc ⁡ ( x ) \cos(x) = \frac{\cot(x)}{\csc(x)} cos(x)=csc(x)cot(x)

cot ⁡ ( x ) = csc ⁡ ( x ) sec ⁡ ( x ) \cot(x) = \frac{\csc(x)}{\sec(x)} cot(x)=sec(x)csc(x)

csc ⁡ ( x ) = sec ⁡ ( x ) tan ⁡ ( x ) \csc(x) = \frac{\sec(x)}{\tan(x)} csc(x)=tan(x)sec(x)

sec ⁡ ( x ) = tan ⁡ ( x ) sin ⁡ ( x ) \sec(x) = \frac{\tan(x)}{\sin(x)} sec(x)=sin(x)tan(x)

2.2.2 逆时针:任意一点的值等于这一点逆时针的第一个值与第二个值的比值

cos ⁡ ( x ) = sin ⁡ ( x ) tan ⁡ ( x ) \cos(x) = \frac{\sin(x)}{\tan(x)} cos(x)=tan(x)sin(x)

sin ⁡ ( x ) = tan ⁡ ( x ) sec ⁡ ( x ) \sin(x) = \frac{\tan(x)}{\sec(x)} sin(x)=sec(x)tan(x)

tan ⁡ ( x ) = sec ⁡ ( x ) csc ⁡ ( x ) \tan(x) = \frac{\sec(x)}{\csc(x)} tan(x)=csc(x)sec(x)

sec ⁡ ( x ) = csc ⁡ ( x ) cot ⁡ ( x ) \sec(x) = \frac{\csc(x)}{\cot(x)} sec(x)=cot(x)csc(x)

csc ⁡ ( x ) = cot ⁡ ( x ) cos ⁡ ( x ) \csc(x) = \frac{\cot(x)}{\cos(x)} csc(x)=cos(x)cot(x)

cot ⁡ ( x ) = cos ⁡ ( x ) sin ⁡ ( x ) \cot(x) = \frac{\cos(x)}{\sin(x)} cot(x)=sin(x)cos(x)

2.3 倒数恒等式

在这里插入图片描述

六边形中对角线上的两个三角函数互为“倒数”:

sin ⁡ ( x ) = 1 csc ⁡ ( x ) \sin(x) = \frac{1}{\csc(x)} sin(x)=csc(x)1

cos ⁡ ( x ) = 1 sec ⁡ ( x ) \cos(x) = \frac{1}{\sec(x)} cos(x)=sec(x)1

cot ⁡ ( x ) = 1 tan ⁡ ( x ) \cot(x) = \frac{1}{\tan(x)} cot(x)=tan(x)1

csc ⁡ ( x ) = 1 sin ⁡ ( x ) \csc(x) = \frac{1}{\sin(x)} csc(x)=sin(x)1

sec ⁡ ( x ) = 1 cos ⁡ ( x ) \sec(x) = \frac{1}{\cos(x)} sec(x)=cos(x)1

tan ⁡ ( x ) = 1 cot ⁡ ( x ) \tan(x) = \frac{1}{\cot(x)} tan(x)=cot(x)1

2.4 勾股/平方恒等式

在这里插入图片描述

倒三角中两上端点平方和等于下端点平方:

sin ⁡ 2 ( x ) + cos ⁡ 2 ( x ) = 1 \sin^2(x) + \cos^2(x) = 1 sin2(x)+cos2(x)=1

1 + cot ⁡ 2 ( x ) = csc ⁡ 2 ( x ) 1 + \cot^2(x) = \csc^2(x) 1+cot2(x)=csc2(x)

tan ⁡ 2 ( x ) + 1 = sec ⁡ 2 ( x ) \tan^2(x) + 1 = \sec^2(x) tan2(x)+1=sec2(x)

2.5 互余恒等式

在这里插入图片描述

当两个角互余时,左端点某个角的三角函数值等于右端点在其余角处的三角函数值:

sin ⁡ ( x ) = cos ⁡ ( 9 0 ∘ − x ) \sin(x) = \cos(90^\circ - x) sin(x)=cos(90x)

tan ⁡ ( x ) = cot ⁡ ( 9 0 ∘ − x ) \tan(x) = \cot(90^\circ - x) tan(x)=cot(90x)

sec ⁡ ( x ) = csc ⁡ ( 9 0 ∘ − x ) \sec(x) = \csc(90^\circ - x) sec(x)=csc(90x)

例如:

sin ⁡ ( 3 0 ∘ ) = cos ⁡ ( 6 0 ∘ ) \sin(30^\circ) = \cos(60^\circ) sin(30)=cos(60)

tan ⁡ ( 8 0 ∘ ) = cot ⁡ ( 1 0 ∘ ) \tan(80^\circ) = \cot(10^\circ) tan(80)=cot(10)

sec ⁡ ( 4 0 ∘ ) = csc ⁡ ( 5 0 ∘ ) \sec(40^\circ) = \csc(50^\circ) sec(40)=csc(50)

参考资料

[1] The Trigonometric Ratio Hexagon

[2] 三角恒等式的魔法六边形
https://www.shuxuele.com/algebra/trig-magic-hexagon.html
[3] 三角函数六边形记忆法_百度百科
https://baike.baidu.com/item/三角函数六边形记忆法

发布于 2023-04-30 11:42・内蒙古


Trigonometry Formulas

三角公式

June 24, 2019 by Veerendra

Trigonometry is a branch of mathematics that deal with angles, lengths and heights of triangles and relations between different parts of circles and other geometrical figures. Maths Formulas – Trigonometric Ratios and identities are very useful and learning the below formulae help in solving the problems better. Trigonometry formulas are essential for solving questions in Trigonometry Ratios and Identities in Competitive Exams.
三角学是数学的一个分支,涉及三角形的角度、长度和高度,以及圆和其他几何图形各部分之间的关系。数学公式——三角比和恒等式非常有用,学习下面的公式有助于更好地解决问题。三角公式对于在竞赛考试中解决三角比和恒等式问题至关重要。

Trigonometric Identities are equalities that involve trigonometric functions and are true for every value of the occurring variables where both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles.
三角恒等式是涉及三角函数的等式,对于等式两边都有定义的变量的每一个值,这些等式都成立。从几何上讲,这些是涉及一个或多个角度的某些函数的恒等式。

Trigonometric Ratio relationship between the measurement of the angles and the length of the side of the right triangle. These formulas relate lengths and areas of particular circles or triangles. On the next page you’ll find identities. The identities don’t refer to particular geometric figures but hold for all angles.
三角比是角度测量与直角三角形边长之间的关系。这些公式关联了特定圆或三角形的长度和面积。在下一页中,您将找到恒等式。这些恒等式并不针对特定的几何图形,而是对所有角度都成立。

Trigonometry Formulas

三角公式

Formulas for arcs and sectors of circles
圆的弧和扇形的公式

You can easily find both the length of an arc and the area of a sector for an angle θ \theta θ in a circle of radius r r r .
您可以轻松地找到半径为 r r r 的圆中角度 θ \theta θ 对应的弧长和扇形面积。

Length of an arc. The length of the arc is just the radius r r r times the angle θ \theta θ where the angle is measured in radians. To convert from degrees to radians, multiply the number of degrees by π 180 \frac{\pi}{180} 180π .
弧长。弧长就是半径 r r r 乘以角度 θ \theta θ,其中角度以弧度为单位。要从度转换为弧度,将度数乘以 π 180 \frac{\pi}{180} 180π

Arc = r θ = r \theta =rθ .
弧长

Sector = 1 2 r 2 θ \text{Sector}=\frac{1}{2}{{r}^{2}}\theta Sector=21r2θ

Trigonometric Formulas Sector

g

Trigonometric Formulas – Right Angle

三角公式——直角

The most important formulas for trigonometry are those for a right triangle. If θ \theta θ is one of the acute angles in a triangle, then the sine of theta is the ratio of the opposite side to the hypotenuse, the cosine is the ratio of the adjacent side to the hypotenuse, and the tangent is the ratio of the opposite side to the adjacent side.
三角学最重要的公式是直角三角形的公式。如果 θ \theta θ 是三角形中的一个锐角,那么 θ \theta θ 的正弦值是对边与斜边的比值,余弦值是邻边与斜边的比值,正切值是对边与邻边的比值。

Trigonometric Formulas Pythagoras Theorem
三角公式勾股定理

Pythagorean theorem, the well-known geometric theorem that the sum of the squares on the legs of a right triangle is equal to the square on the hypotenuse (the side opposite the right angle)—or, in familiar algebraic notation, ( P ) 2 + ( B ) 2 = ( H ) 2 (P)^2 + (B)^2 = (H)^2 (P)2+(B)2=(H)2 .
勾股定理,众所周知的几何定理,直角三角形两直角边的平方和等于斜边的平方(斜边是直角对面的边)——或者,用熟悉的代数符号表示, ( P ) 2 + ( B ) 2 = ( H ) 2 (P)^2 + (B)^2 = (H)^2 (P)2+(B)2=(H)2

Applying Pythagoras theorem for the given right-angled theorem, we have:
应用勾股定理于给定的直角三角形,我们有:

( Perpendicular ) 2 + ( Base ) 2 = ( Hypotenuse ) 2 ( \text{Perpendicular} )^2 + ( \text{Base} )^2 = ( \text{Hypotenuse} )^2 (Perpendicular)2+(Base)2=(Hypotenuse)2
( P ) 2 + ( B ) 2 = ( H ) 2 (P)^2 + (B)^2 = (H)^2 (P)2+(B)2=(H)2

The trigonometric properties are given below
三角性质如下

三角函数定义

S.noPropertyMathematical value
1 sin ⁡ A \sin A sinA P H \frac{P}{H} HP
2 cos ⁡ A \cos A cosA B H \frac{B}{H} HB
3 tan ⁡ A \tan A tanA P B \frac{P}{B} BP
4 cot ⁡ A \cot A cotA B P \frac{B}{P} PB
5 csc ⁡ A \csc A cscA H P \frac{H}{P} PH
6 sec ⁡ A \sec A secA H B \frac{H}{B} BH

Relation Between Trigonometric Identities:
三角函数恒等式关系

S.noIdentityRelation
1 tan ⁡ A \tan A tanA sin ⁡ A cos ⁡ A \frac{\sin A}{\cos A} cosAsinA
2 cot ⁡ A \cot A cotA cos ⁡ A sin ⁡ A \frac{\cos A}{\sin A} sinAcosA
3 csc ⁡ A \csc A cscA 1 sin ⁡ A \frac{1}{\sin A} sinA1
4 sec ⁡ A \sec A secA 1 cos ⁡ A \frac{1}{\cos A} cosA1

三角恒等式之间的关系 g

Magical Hexagon for Trigonometry Identities
三角恒等式的神奇六边形

Magical Hexagon Trigonometry Formulas
神奇六边形三角公式

  • Start with - tan ⁡ ( x ) = sin ⁡ ( x ) / cos ⁡ ( x ) \tan(x)=\sin(x)/\cos(x) tan(x)=sin(x)/cos(x)
    从 - tan ⁡ ( x ) = sin ⁡ ( x ) / cos ⁡ ( x ) \tan(x)=\sin(x)/\cos(x) tan(x)=sin(x)/cos(x) 开始
  • cot ⁡ \cot cot (which is cotangent) on the opposite side of the hexagon to tan ⁡ \tan tan
    cot ⁡ \cot cot(即 余切)在六边形中与 tan ⁡ \tan tan 相对
  • csc ⁡ \csc csc (which is cosecant) next, and
    接下来是 csc ⁡ \csc csc(即 余割),以及
  • sec ⁡ \sec sec (which is secant) last
    最后是 sec ⁡ \sec sec(即 正割)
  • Important: the “co” functions are all on the right
    重要提示:带“co”的函数都在右边

Magical Hexagon for Trig Identities
三角恒等式的神奇六边形 g

Clock Wise:
顺时针:

Magical Hexagon Clock wise Trigonometry Formulas
神奇六边形顺时针三角公式

  • tan ⁡ ( x ) = sin ⁡ ( x ) cos ⁡ ( x ) \tan(x) = \frac{\sin(x)}{\cos(x)} tan(x)=cos(x)sin(x)
  • sin ⁡ ( x ) = cos ⁡ ( x ) cot ⁡ ( x ) \sin(x) = \frac{\cos(x)}{\cot(x)} sin(x)=cot(x)cos(x)
  • cos ⁡ ( x ) = cot ⁡ ( x ) csc ⁡ ( x ) \cos(x) = \frac{\cot(x)}{\csc(x)} cos(x)=csc(x)cot(x)
  • cot ⁡ ( x ) = csc ⁡ ( x ) sec ⁡ ( x ) \cot(x) = \frac{\csc(x)}{\sec(x)} cot(x)=sec(x)csc(x)
  • csc ⁡ ( x ) = sec ⁡ ( x ) tan ⁡ ( x ) \csc(x) = \frac{\sec(x)}{\tan(x)} csc(x)=tan(x)sec(x)
  • sec ⁡ ( x ) = tan ⁡ ( x ) sin ⁡ ( x ) \sec(x) = \frac{\tan(x)}{\sin(x)} sec(x)=sin(x)tan(x)

Counterclock Wise:
逆时针:

Magical Hexagon Anti Clock Wise Trigonometry Formulas
神奇六边形逆时针三角公式

  • cos ⁡ ( x ) = sin ⁡ ( x ) tan ⁡ ( x ) \cos(x) = \frac{\sin(x)}{\tan(x)} cos(x)=tan(x)sin(x)
  • sin ⁡ ( x ) = tan ⁡ ( x ) sec ⁡ ( x ) \sin(x) = \frac{\tan(x)}{\sec(x)} sin(x)=sec(x)tan(x)
  • tan ⁡ ( x ) = sec ⁡ ( x ) csc ⁡ ( x ) \tan(x) = \frac{\sec(x)}{\csc(x)} tan(x)=csc(x)sec(x)
  • sec ⁡ ( x ) = csc ⁡ ( x ) cot ⁡ ( x ) \sec(x) = \frac{\csc(x)}{\cot(x)} sec(x)=cot(x)csc(x)
  • csc ⁡ ( x ) = cot ⁡ ( x ) cos ⁡ ( x ) \csc(x) = \frac{\cot(x)}{\cos(x)} csc(x)=cos(x)cot(x)
  • cot ⁡ ( x ) = cos ⁡ ( x ) sin ⁡ ( x ) \cot(x) = \frac{\cos(x)}{\sin(x)} cot(x)=sin(x)cos(x)

Reciprocal Relations

互为倒数的关系

Reciprocal Identitities Trig Formulas
互为倒数的三角公式 g

Trigonometric Formulas Reciprocal Relations
三角公式互为倒数的关系
csc ⁡ θ = 1 sin ⁡ θ \csc\theta=\frac{1}{\sin\theta} cscθ=sinθ1

sec ⁡ θ = 1 cos ⁡ θ \sec\theta=\frac{1}{\cos\theta} secθ=cosθ1

cot ⁡ θ = 1 tan ⁡ θ \cot\theta=\frac{1}{\tan\theta} cotθ=tanθ1

sin ⁡ θ = 1 csc ⁡ θ \sin\theta=\frac{1}{\csc\theta} sinθ=cscθ1

cos ⁡ θ = 1 sec ⁡ θ \cos\theta=\frac{1}{\sec\theta} cosθ=secθ1

tan ⁡ θ = 1 cot ⁡ θ \tan\theta=\frac{1}{\cot\theta} tanθ=cotθ1

Square Law Formulas

平方法则公式

在这里插入图片描述

平方法则公式 g

sin ⁡ 2 A + cos ⁡ 2 A = 1 \sin^{2}A + \cos^{2}A = 1 sin2A+cos2A=1

tan ⁡ 2 A + 1 = sec ⁡ 2 A \tan^{2}A + 1=\sec^{2}A tan2A+1=sec2A

1 + cot ⁡ 2 A = csc ⁡ 2 1 + \cot^{2}A= \csc^{2} 1+cot2A=csc2

Trigonometric Formulas Square Law
三角公式平方法则

Along with the knowledge that the two acute angles are complementary, that is to say, they add to 9 0 ∘ 90^\circ 90, you can solve any right triangle:
除了知道两个锐角是互余的,即它们的和为 9 0 ∘ 90^\circ 90,您可以解任何直角三角形:

  • If you know two of the three sides, you can find the third side and both acute angles.
    如果你知道三条边中的两条,你可以找到第三条边和两个锐角。

  • If you know one acute angle and one of the three sides, you can find the other acute angle and the other two sides.
    如果你知道一个锐角和三条边中的一条,你可以找到另一个锐角和另外两条边。

*Signs of Trigonometric Ratios*

*三角比的符号*

A lot of trigonometry formulas are based on the signs of trigonometric ratios, based on the quadrants they lie in. Therefore it becomes extremely essential for us to understand how trigonometric ratios get the positive or negative sign. The sign is based on the quadrant in which the angle lies.
许多三角公式都基于三角比的符号,这些符号取决于它们所在的象限。因此,我们非常有必要理解三角比如何获得正号或负号。符号取决于角度所在的象限。

Trigonometry Formulas Signs of Trigonometric Ratios
三角公式三角比的符号

Let us assume an angle of θ 1 \theta_1 θ1 lying in the 1st quadrant and an angle θ \theta θ in quadrant one and two combined. So let us see how signs change with respect to the quadrant they lie in.
假设一个角度 θ 1 \theta_1 θ1 位于第一象限,另一个角度 θ \theta θ 位于第一象限和第二象限的组合。那么我们来看看符号是如何随着它们所在的象限而变化的。

  • In Q 1 Q_1 Q1 all Trigonometric Ratios are positive. (Angles between 0 ∘ 0^\circ 0 9 0 ∘ 90^\circ 90)

    在第一象限,所有三角比均为正。(角度在 0 ∘ 0^\circ 0 9 0 ∘ 90^\circ 90 之间)

  • In Q 2 Q_2 Q2 all trigonometric ratios of sin ⁡ θ \sin \theta sinθ and csc ⁡ θ \csc \theta cscθ are positive. (Angles between 9 0 ∘ 90^\circ 90 18 0 ∘ 180^\circ 180)

    在第二象限, sin ⁡ θ \sin \theta sinθ csc ⁡ θ \csc \theta cscθ 的三角比为正。(角度在 9 0 ∘ 90^\circ 90 18 0 ∘ 180^\circ 180 之间)

  • In Q 3 Q_3 Q3 all trigonometric ratios of cos ⁡ θ \cos \theta cosθ and sec ⁡ θ \sec \theta secθ are positive. (Angles between 18 0 ∘ 180^\circ 180 27 0 ∘ 270^\circ 270)

    在第三象限, cos ⁡ θ \cos \theta cosθ sec ⁡ θ \sec \theta secθ 的三角比为正。(角度在 18 0 ∘ 180^\circ 180 27 0 ∘ 270^\circ 270 之间)

  • In Q 4 Q_4 Q4 all trigonometric ratios of tan ⁡ θ \tan \theta tanθ and cot ⁡ θ \cot \theta cotθ are positive. (Angles between 27 0 ∘ 270^\circ 270 36 0 ∘ 360^\circ 360)

    在第四象限, tan ⁡ θ \tan \theta tanθ cot ⁡ θ \cot \theta cotθ 的三角比为正。(角度在 27 0 ∘ 270^\circ 270 36 0 ∘ 360^\circ 360 之间)

θ \theta θ is the angle made between the x x x-axis and the line, in the anti-clockwise direction. If we move in the clockwise direction, the angle will be taken as − θ - \theta θ. We know that in quadrant 4, only cos ⁡ θ \cos \theta cosθ and sec ⁡ θ \sec \theta secθ will be positive, the others will be negative, therefore:
θ \theta θ x x x 轴与线之间的夹角,按逆时针方向测量。如果我们按顺时针方向移动,角度将被视为 − θ - \theta θ。我们知道在第四象限中,只有 cos ⁡ θ \cos \theta cosθ sec ⁡ θ \sec \theta secθ 为正,其他为负,因此:

  • sin ⁡ ( − θ ) = − sin ⁡ θ \sin ( - \theta ) = - \sin \theta sin(θ)=sinθ
  • cos ⁡ ( − θ ) = cos ⁡ θ \cos ( - \theta ) = \cos \theta cos(θ)=cosθ
  • tan ⁡ ( − θ ) = − tan ⁡ θ \tan ( - \theta ) = - \tan \theta tan(θ)=tanθ
  • sec ⁡ ( − θ ) = + sec ⁡ θ \sec ( - \theta ) = + \sec \theta sec(θ)=+secθ
  • cot ⁡ ( − θ ) = − cot ⁡ θ \cot ( - \theta ) = - \cot \theta cot(θ)=cotθ

We need to understand that trigonometric ratios would change for angles 9 0 ∘ ± θ 90^\circ \pm \theta 90±θ and 27 0 ∘ ± θ 270^\circ \pm \theta 270±θ and they will remain same for 18 0 ∘ ± θ 180^\circ \pm \theta 180±θ and 36 0 ∘ ± θ 360^\circ \pm \theta 360±θ. Let’s see what happens when we add or subtract θ \theta θ from 9 0 ∘ ± θ 90^\circ \pm \theta 90±θ and 27 0 ∘ ± θ 270^\circ \pm \theta 270±θ:
我们需要理解,对于角度 9 0 ∘ ± θ 90^\circ \pm \theta 90±θ 27 0 ∘ ± θ 270^\circ \pm \theta 270±θ,三角比会发生变化,而对于 18 0 ∘ ± θ 180^\circ \pm \theta 180±θ 36 0 ∘ ± θ 360^\circ \pm \theta 360±θ,它们保持不变。让我们看看当我们从 9 0 ∘ ± θ 90^\circ \pm \theta 90±θ 27 0 ∘ ± θ 270^\circ \pm \theta 270±θ 中加减 θ \theta θ 时会发生什么。

Trigonometry Formulas The Pythagorous Identities
三角公式勾股恒等式

  • sec ⁡ ( 9 0 ∘ + θ ) = cos ⁡ θ \sec ( 90^\circ + \theta ) = \cos \theta sec(90+θ)=cosθ
  • cot ⁡ ( 9 0 ∘ − θ ) = cos ⁡ θ \cot ( 90^\circ - \theta ) = \cos \theta cot(90θ)=cosθ
  • tan ⁡ ( 9 0 ∘ + θ ) = − cot ⁡ θ \tan ( 90^\circ + \theta ) = - \cot \theta tan(90+θ)=cotθ
  • tan ⁡ ( 9 0 ∘ − θ ) = cot ⁡ θ \tan ( 90^\circ - \theta ) = \cot \theta tan(90θ)=cotθ
  • sec ⁡ ( 9 0 ∘ + θ ) = csc ⁡ θ \sec ( 90^\circ + \theta ) = \csc \theta sec(90+θ)=cscθ
  • sec ⁡ ( 9 0 ∘ + θ ) = csc ⁡ θ \sec ( 90^\circ + \theta ) = \csc \theta sec(90+θ)=cscθ
  • sin ⁡ ( 27 0 ∘ − θ ) = − cos ⁡ θ \sin ( 270^\circ - \theta ) = - \cos \theta sin(270θ)=cosθ
  • sin ⁡ ( 27 0 ∘ − θ ) = − cos ⁡ θ \sin ( 270^\circ - \theta ) = - \cos \theta sin(270θ)=cosθ

This is because any angle that is 27 0 ∘ + θ 270^\circ + \theta 270+θ will fall in quadrant 4 and in this quadrant only trigonometric ratios of cos ⁡ \cos cos and sec ⁡ \sec sec are positive. So the above will be negative. 27 0 ∘ − θ 270^\circ - \theta 270θ will fall in the quadrant 3 and in this quadrant trigonometric ratios of tan ⁡ \tan tan and cot ⁡ \cot cot are positive, so it will again be negative. For 18 0 ∘ ± θ 180^\circ \pm \theta 180±θ and for 36 0 ∘ ± θ 360^\circ \pm \theta 360±θ, the signs will remain the same.
这是因为任何角度为 27 0 ∘ + θ 270^\circ + \theta 270+θ 的角都将落在第四象限,在这个象限中,只有 cos ⁡ \cos cos sec ⁡ \sec sec 的三角比为正。因此,上述结果为负。 27 0 ∘ − θ 270^\circ - \theta 270θ 将落在第三象限,在这个象限中, tan ⁡ \tan tan cot ⁡ \cot cot 的三角比为正,因此它也将为负。对于 18 0 ∘ ± θ 180^\circ \pm \theta 180±θ 36 0 ∘ ± θ 360^\circ \pm \theta 360±θ,符号保持不变。

  • sin ⁡ ( 36 0 ∘ + θ ) = sin ⁡ θ \sin ( 360^\circ + \theta ) = \sin \theta sin(360+θ)=sinθ
  • sin ⁡ ( 36 0 ∘ − θ ) = − sin ⁡ θ \sin ( 360^\circ - \theta ) = - \sin \theta sin(360θ)=sinθ

For 36 0 ∘ + θ 360^\circ + \theta 360+θ, the angle will complete one full rotation and then lie in quadrant 1 where all trigonometric ratios are positive. So there are 2 important things to remember:
对于 36 0 ∘ + θ 360^\circ + \theta 360+θ,角度将完成一个完整的旋转,然后位于第一象限,所有三角比均为正。因此,有两点需要记住:

  • The sign of the trigonometric ratios change based on the value of θ \theta θ.

    三角比的符号根据 θ \theta θ 的值而变化。

  • sin ⁡ \sin sin becomes cos ⁡ \cos cos and cos ⁡ \cos cos becomes sin ⁡ \sin sin for 9 0 ∘ + θ 90^\circ + \theta 90+θ and for 27 0 ∘ + θ 270^\circ + \theta 270+θ and it remains the same for 18 0 ∘ + θ 180^\circ + \theta 180+θ and for 36 0 ∘ + θ 360^\circ + \theta 360+θ.

    对于 9 0 ∘ + θ 90^\circ + \theta 90+θ 27 0 ∘ + θ 270^\circ + \theta 270+θ sin ⁡ \sin sin 变为 cos ⁡ \cos cos cos ⁡ \cos cos 变为 sin ⁡ \sin sin,而对于 18 0 ∘ + θ 180^\circ + \theta 180+θ 36 0 ∘ + θ 360^\circ + \theta 360+θ,它们保持不变。

Trigonometry Formulas | Trigonometric Identities

三角公式 | 三角恒等式

After looking at the trigonometric ratios, let us move on to trigonometric identities, which are the basics of most trigonometry formulas. The above identities hold true for any value of θ \theta θ.
在研究了三角比之后,让我们转向三角恒等式,这些是大多数三角公式的基础。上述恒等式对于任何 θ \theta θ 的值都成立。

Product Identities:
乘积恒等式:

Product Identities Trigonometry Formulas
乘积恒等式三角公式

Trigonometry Formulas | Sum and Difference of Angles

三角公式 | 角的和与差

Trigonometry Formulas Converitng Products to Sum and difference
三角公式将乘积转换为和与差 g

sin ⁡ A sin ⁡ B = 1 2 [ cos ⁡ ( A − B ) − cos ⁡ ( A + B ) ] cos ⁡ A cos ⁡ B = 1 2 [ cos ⁡ ( A − B ) + cos ⁡ ( A + B ) ] sin ⁡ A cos ⁡ B = 1 2 [ sin ⁡ ( A + B ) + sin ⁡ ( A − B ) ] cos ⁡ A sin ⁡ B = 1 2 [ sin ⁡ ( A + B ) − sin ⁡ ( A − B ) ] \begin{align*} \sin A\sin B&=\frac{1}{2}[\cos(A - B)-\cos(A + B)] \\ \cos A\cos B&=\frac{1}{2}[\cos(A - B)+\cos(A + B)] \\ \sin A\cos B&=\frac{1}{2}[\sin(A + B)+\sin(A - B)] \\ \cos A\sin B&=\frac{1}{2}[\sin(A + B)-\sin(A - B)] \end{align*} sinAsinBcosAcosBsinAcosBcosAsinB=21[cos(AB)cos(A+B)]=21[cos(AB)+cos(A+B)]=21[sin(A+B)+sin(AB)]=21[sin(A+B)sin(AB)]

Trigonometry Formulas | Double Angle Formulas

三角公式 | 倍角公式

g
sin ⁡ 2 θ = 2 sin ⁡ θ cos ⁡ θ cos ⁡ 2 θ = cos ⁡ 2 θ − sin ⁡ 2 θ = 2 cos ⁡ 2 θ − 1 = 1 − 2 sin ⁡ 2 θ tan ⁡ 2 θ = 2 tan ⁡ θ 1 − tan ⁡ 2 θ cot ⁡ 2 θ = cot ⁡ 2 θ − 1 2 cot ⁡ θ \begin{align*} \sin2\theta&=2\sin\theta\cos\theta\\ \cos2\theta&=\cos^{2}\theta - \sin^{2}\theta\\ &=2\cos^{2}\theta - 1\\ &=1 - 2\sin^{2}\theta\\ \tan2\theta&=\frac{2\tan\theta}{1 - \tan^{2}\theta}\\ \cot2\theta&=\frac{\cot^{2}\theta - 1}{2\cot\theta} \end{align*} sin2θcos2θtan2θcot2θ=2sinθcosθ=cos2θsin2θ=2cos2θ1=12sin2θ=1tan2θ2tanθ=2cotθcot2θ1

Trigonometry Formulas | Triple Angle Formulas

三角公式 | 三倍角公式

g

sin ⁡ 3 θ = 3 sin ⁡ θ − 4 sin ⁡ 3 θ cos ⁡ 3 θ = 4 cos ⁡ 3 θ − 3 cos ⁡ θ tan ⁡ 3 θ = 3 tan ⁡ θ − tan ⁡ 3 θ 1 − 3 tan ⁡ 2 θ cot ⁡ 3 θ = cot ⁡ 3 θ − 3 cot ⁡ θ 3 cot ⁡ 2 θ − 1 \begin{align*} \sin3\theta &= 3\sin\theta - 4\sin^{3}\theta \\ \cos3\theta &= 4\cos^{3}\theta - 3\cos\theta \\ \tan3\theta &= \frac{3\tan\theta - \tan^{3}\theta}{1 - 3\tan^{2}\theta} \\ \cot3\theta &= \frac{\cot^{3}\theta - 3\cot\theta}{3\cot^{2}\theta - 1} \end{align*} sin3θcos3θtan3θcot3θ=3sinθ4sin3θ=4cos3θ3cosθ=13tan2θ3tanθtan3θ=3cot2θ1cot3θ3cotθ

Trigonometry Formulas | Values of Trigonometric Ratios

三角公式 | 三角比的值

Trigonometric Values for some Common angles
g

DegreesRadians sin ⁡ θ \sin\theta sinθ cos ⁡ θ \cos\theta cosθ tan ⁡ θ \tan\theta tanθ cot ⁡ θ \cot\theta cotθ sec ⁡ θ \sec\theta secθ csc ⁡ θ \csc\theta cscθ
0 ∘ 0^{\circ} 0 0 0 0 0 0 0 1 1 1 0 0 0Undefined 1 1 1Undefined
3 0 ∘ 30^{\circ} 30 π 6 \frac{\pi}{6} 6π 1 2 \frac{1}{2} 21 3 2 \frac{\sqrt{3}}{2} 23 1 3 \frac{1}{\sqrt{3}} 3 1 3 \sqrt{3} 3 2 3 \frac{2}{\sqrt{3}} 3 2 2 2 2
4 5 ∘ 45^{\circ} 45 π 4 \frac{\pi}{4} 4π 1 2 \frac{1}{\sqrt{2}} 2 1 1 2 \frac{1}{\sqrt{2}} 2 1 1 1 1 1 1 1 2 \sqrt{2} 2 2 \sqrt{2} 2
6 0 ∘ 60^{\circ} 60 π 3 \frac{\pi}{3} 3π 3 2 \frac{\sqrt{3}}{2} 23 1 2 \frac{1}{2} 21 3 \sqrt{3} 3 1 3 \frac{1}{\sqrt{3}} 3 1 2 2 2 2 3 \frac{2}{\sqrt{3}} 3 2
9 0 ∘ 90^{\circ} 90 π 2 \frac{\pi}{2} 2π 1 1 1 0 0 0Undefined 0 0 0Undefined 1 1 1
18 0 ∘ 180^{\circ} 180 π \pi π 0 0 0 − 1 -1 1 0 0 0Undefined − 1 -1 1Undefined
36 0 ∘ 360^{\circ} 360 2 π 2\pi 2π 0 0 0 1 1 1 0 0 0Undefined 1 1 1Undefined

Summary of Trigonometric Identities
三角恒等式总结

Trigonometric Formulas for Class 10 | 10 年级三角公式

Periodicity and Periodic Identities

周期性和周期恒等式

sin ⁡ ( θ + 2 π n ) = sin ⁡ θ cos ⁡ ( θ + 2 π n ) = cos ⁡ θ tan ⁡ ( θ + 2 π n ) = tan ⁡ θ csc ⁡ ( θ + 2 π n ) = csc ⁡ θ sec ⁡ ( θ + 2 π n ) = sec ⁡ θ cot ⁡ ( θ + 2 π n ) = cot ⁡ θ \begin{align*} \sin(\theta + 2\pi n)&=\sin\theta\\ \cos(\theta + 2\pi n)&=\cos\theta\\ \tan(\theta + 2\pi n)&=\tan\theta\\ \csc(\theta + 2\pi n)&=\csc\theta\\ \sec(\theta + 2\pi n)&=\sec\theta\\ \cot(\theta + 2\pi n)&=\cot\theta \end{align*} sin(θ+2πn)cos(θ+2πn)tan(θ+2πn)csc(θ+2πn)sec(θ+2πn)cot(θ+2πn)=sinθ=cosθ=tanθ=cscθ=secθ=cotθ

Half angle identities

半角恒等式

sin ⁡ x 2 = ± 1 − cos ⁡ x 2 \sin \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}} sin2x=±21cosx

cos ⁡ x 2 = ± 1 + cos ⁡ x 2 \cos \frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}} cos2x=±21+cosx
tan ⁡ x 2 = 1 − cos ⁡ x 1 + cos ⁡ x = 1 − cos ⁡ x sin ⁡ x = sin ⁡ x 1 + cos ⁡ x \tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x} tan2x=1+cosx1cosx =sinx1cosx=1+cosxsinx
cot ⁡ x 2 = 1 + cos ⁡ x 1 − cos ⁡ x = 1 + cos ⁡ x sin ⁡ x = sin ⁡ x 1 − cos ⁡ x \cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}} = \frac{1 + \cos x}{\sin x} = \frac{\sin x}{1 - \cos x} cot2x=1cosx1+cosx =sinx1+cosx=1cosxsinx

Complex relations

复杂关系

sin ⁡ θ = e i θ − e − i θ 2 i cos ⁡ θ = e i θ + e − i θ 2 tan ⁡ θ = e i θ − e − i θ ( e i θ + e − i θ ) i cot ⁡ θ = ( e i θ + e − i θ ) i e i θ − e − i θ csc ⁡ θ = 2 i e i θ − e − i θ sec ⁡ θ = 2 e i θ + e − i θ \begin{align*} \sin\theta&=\frac{e^{i\theta}-e^{-i\theta}}{2i}\\ \cos\theta&=\frac{e^{i\theta}+e^{-i\theta}}{2}\\ \tan\theta&=\frac{e^{i\theta}-e^{-i\theta}}{(e^{i\theta}+e^{-i\theta})i}\\ \cot\theta&=\frac{(e^{i\theta}+e^{-i\theta})i}{e^{i\theta}-e^{-i\theta}}\\ \csc\theta&=\frac{2i}{e^{i\theta}-e^{-i\theta}}\\ \sec\theta&=\frac{2}{e^{i\theta}+e^{-i\theta}} \end{align*} sinθcosθtanθcotθcscθsecθ=2ieiθeiθ=2eiθ+eiθ=(eiθ+eiθ)ieiθeiθ=eiθeiθ(eiθ+eiθ)i=eiθeiθ2i=eiθ+eiθ2

三角公式复杂关系

Inverse trigonometric functions

反三角函数

g

NameUsual notation      ~~~~     Definition       ~~~~~      Domain of x x x for real resultRange of usual principal value (radians)Range of usual principal value (degrees)
arcsine y = arcsin ⁡ ( x ) y = \arcsin(x) y=arcsin(x) x = sin ⁡ ( y ) x = \sin(y) x=sin(y) − 1 ≤ x ≤ 1 -1\leq x\leq1 1x1 − π 2 ≤ y ≤ π 2 -\frac{\pi}{2}\leq y\leq\frac{\pi}{2} 2πy2π − 9 0 ∘ ≤ y ≤ 9 0 ∘ -90^{\circ}\leq y\leq90^{\circ} 90y90
arccosine y = arccos ⁡ ( x ) y = \arccos(x) y=arccos(x) x = cos ⁡ ( y ) x = \cos(y) x=cos(y) − 1 ≤ x ≤ 1 -1\leq x\leq1 1x1 0 ≤ y ≤ π 0\leq y\leq\pi 0yπ 0 ∘ ≤ y ≤ 18 0 ∘ 0^{\circ}\leq y\leq180^{\circ} 0y180
arctangent y = arctan ⁡ ( x ) y = \arctan(x) y=arctan(x) x = tan ⁡ ( y ) x = \tan(y) x=tan(y)all real numbers − π 2 < y < π 2 -\frac{\pi}{2}<y<\frac{\pi}{2} 2π<y<2π − 9 0 ∘ < y < 9 0 ∘ -90^{\circ}<y<90^{\circ} 90<y<90
arccotangent y = arccot ( x ) y = \text{arccot}(x) y=arccot(x) x = cot ⁡ ( y ) x = \cot(y) x=cot(y)all real numbers 0 < y < π 0<y<\pi 0<y<π 0 ∘ < y < 18 0 ∘ 0^{\circ}<y<180^{\circ} 0<y<180
arcsecant y = arcsec ( x ) y = \text{arcsec}(x) y=arcsec(x) x = sec ⁡ ( y ) x = \sec(y) x=sec(y) x ≤ − 1 x\leq - 1 x1 or 1 ≤ x 1\leq x 1x 0 ≤ y < π 2 0\leq y<\frac{\pi}{2} 0y<2π or π 2 < y ≤ π \frac{\pi}{2}<y\leq\pi 2π<yπ 0 ∘ ≤ y < 9 0 ∘ 0^{\circ}\leq y<90^{\circ} 0y<90 or 9 0 ∘ < y ≤ 18 0 ∘ 90^{\circ}<y\leq180^{\circ} 90<y180
arccosecant y = arccsc ( x ) y = \text{arccsc}(x) y=arccsc(x) x = csc ⁡ ( y ) x = \csc(y) x=csc(y) x ≤ − 1 x\leq - 1 x1 or 1 ≤ x 1\leq x 1x − π 2 ≤ y < 0 -\frac{\pi}{2}\leq y<0 2πy<0 or 0 < y ≤ π 2 0<y\leq\frac{\pi}{2} 0<y2π − 9 0 ∘ ≤ y < 0 ∘ -90^{\circ}\leq y<0^{\circ} 90y<0 or 0 ∘ < y ≤ 9 0 ∘ 0^{\circ}<y\leq90^{\circ} 0<y90

Trigonometric Formulas Inverse Trigonometric Functions

三角公式反三角函数

Complimentary angle

余角

arcsin ⁡ ( x ) = π 2 − arccos ⁡ ( x ) arccos ⁡ ( x ) = π 2 − arcsin ⁡ ( x ) arctan ⁡ ( x ) = π 2 − a r c c o t ( x ) a r c c o t ( x ) = π 2 − arctan ⁡ ( x ) a r c c s c ( x ) = π 2 − a r c s e c ( x ) a r c s e c ( x ) = π 2 − a r c c s c ( x ) \begin{align*} \arcsin(x)&=\frac{\pi}{2}-\arccos(x)\\ \arccos(x)&=\frac{\pi}{2}-\arcsin(x)\\ \arctan(x)&=\frac{\pi}{2}-\mathrm{arccot}(x)\\ \mathrm{arccot}(x)&=\frac{\pi}{2}-\arctan(x)\\ \mathrm{arccsc}(x)&=\frac{\pi}{2}-\mathrm{arcsec}(x)\\ \mathrm{arcsec}(x)&=\frac{\pi}{2}-\mathrm{arccsc}(x) \end{align*} arcsin(x)arccos(x)arctan(x)arccot(x)arccsc(x)arcsec(x)=2πarccos(x)=2πarcsin(x)=2πarccot(x)=2πarctan(x)=2πarcsec(x)=2πarccsc(x)

三角公式余角

Negative arguments

负角公式

arcsin ⁡ ( − x ) = − arcsin ⁡ ( x ) arccos ⁡ ( − x ) = π − arccos ⁡ ( x ) arctan ⁡ ( − x ) = − arctan ⁡ ( x ) a r c c o t ( − x ) = π − a r c c o t ( x ) a r c s e c ( − x ) = π − a r c s e c ( x ) a r c c s c ( − x ) = − a r c c s c ( x ) \begin{align*} \arcsin(-x)&=-\arcsin(x)\\ \arccos(-x)&=\pi - \arccos(x)\\ \arctan(-x)&=-\arctan(x)\\ \mathrm{arccot}(-x)&=\pi - \mathrm{arccot}(x)\\ \mathrm{arcsec}(-x)&=\pi - \mathrm{arcsec}(x)\\ \mathrm{arccsc}(-x)&=-\mathrm{arccsc}(x) \end{align*} arcsin(x)arccos(x)arctan(x)arccot(x)arcsec(x)arccsc(x)=arcsin(x)=πarccos(x)=arctan(x)=πarccot(x)=πarcsec(x)=arccsc(x)

Reciprocal arguments

倒数公式

arccos ⁡ ( 1 x ) = a r c s e c ( x ) arcsin ⁡ ( 1 x ) = a r c c s c ( x ) arctan ⁡ ( 1 x ) = { π 2 − arctan ⁡ ( x ) = a r c c o t ( x ) , if  x > 0 − π 2 − arctan ⁡ ( x ) = a r c c o t ( x ) − π , if  x < 0 a r c c o t ( 1 x ) = { π 2 − a r c c o t ( x ) = arctan ⁡ ( x ) , if  x > 0 3 π 2 − a r c c o t ( x ) = π + arctan ⁡ ( x ) , if  x < 0 a r c s e c ( 1 x ) = arccos ⁡ ( x ) a r c c s c ( 1 x ) = arcsin ⁡ ( x ) \begin{align*} \arccos\left(\frac{1}{x}\right)&=\mathrm{arcsec}(x)\\ \arcsin\left(\frac{1}{x}\right)&=\mathrm{arccsc}(x)\\ \arctan\left(\frac{1}{x}\right)&=\begin{cases} \frac{\pi}{2}-\arctan(x)=\mathrm{arccot}(x),& \text{if } x>0\\ -\frac{\pi}{2}-\arctan(x)=\mathrm{arccot}(x)-\pi, &\text{if } x<0 \end{cases}\\ \mathrm{arccot}\left(\frac{1}{x}\right)&=\begin{cases} \frac{\pi}{2}-\mathrm{arccot}(x)=\arctan(x),& \text{if } x>0\\ \frac{3\pi}{2}-\mathrm{arccot}(x)=\pi+\arctan(x), &\text{if } x<0 \end{cases}\\ \mathrm{arcsec}\left(\frac{1}{x}\right)&=\arccos(x)\\ \mathrm{arccsc}\left(\frac{1}{x}\right)&=\arcsin(x) \end{align*} arccos(x1)arcsin(x1)arctan(x1)arccot(x1)arcsec(x1)arccsc(x1)=arcsec(x)=arccsc(x)={2πarctan(x)=arccot(x),2πarctan(x)=arccot(x)π,if x>0if x<0={2πarccot(x)=arctan(x),23πarccot(x)=π+arctan(x),if x>0if x<0=arccos(x)=arcsin(x)

Values of Trigonometric Functions

三角函数的值

g

α \alpha α 0 0 0 π 6 \frac{\pi}{6} 6π π 4 \frac{\pi}{4} 4π π 3 \frac{\pi}{3} 3π π 2 \frac{\pi}{2} 2π 2 π 3 \frac{2\pi}{3} 32π 3 π 4 \frac{3\pi}{4} 43π 5 π 6 \frac{5\pi}{6} 65π π \pi π 7 π 6 \frac{7\pi}{6} 67π 5 π 4 \frac{5\pi}{4} 45π 4 π 3 \frac{4\pi}{3} 34π 3 π 2 \frac{3\pi}{2} 23π 5 π 3 \frac{5\pi}{3} 35π 7 π 4 \frac{7\pi}{4} 47π 11 π 6 \frac{11\pi}{6} 611π 2 π 2\pi 2π
α ∘ \alpha^{\circ} α 0 ∘ 0^{\circ} 0 3 0 ∘ 30^{\circ} 30 4 5 ∘ 45^{\circ} 45 6 0 ∘ 60^{\circ} 60 9 0 ∘ 90^{\circ} 90 12 0 ∘ 120^{\circ} 120 13 5 ∘ 135^{\circ} 135 15 0 ∘ 150^{\circ} 150 18 0 ∘ 180^{\circ} 180 21 0 ∘ 210^{\circ} 210 22 5 ∘ 225^{\circ} 225 24 0 ∘ 240^{\circ} 240 27 0 ∘ 270^{\circ} 270 30 0 ∘ 300^{\circ} 300 31 5 ∘ 315^{\circ} 315 33 0 ∘ 330^{\circ} 330 36 0 ∘ 360^{\circ} 360
sin ⁡ α \sin\alpha sinα 0 0 0 1 2 \frac{1}{2} 21 2 2 \frac{\sqrt{2}}{2} 22 3 2 \frac{\sqrt{3}}{2} 23 1 1 1 3 2 \frac{\sqrt{3}}{2} 23 2 2 \frac{\sqrt{2}}{2} 22 1 2 \frac{1}{2} 21 0 0 0 − 1 2 -\frac{1}{2} 21 − 2 2 -\frac{\sqrt{2}}{2} 22 − 3 2 -\frac{\sqrt{3}}{2} 23 − 1 -1 1 − 3 2 -\frac{\sqrt{3}}{2} 23 − 2 2 -\frac{\sqrt{2}}{2} 22 − 1 2 -\frac{1}{2} 21 0 0 0
cos ⁡ α \cos\alpha cosα 1 1 1 3 2 \frac{\sqrt{3}}{2} 23 2 2 \frac{\sqrt{2}}{2} 22 1 2 \frac{1}{2} 21 0 0 0 − 1 2 -\frac{1}{2} 21 − 2 2 -\frac{\sqrt{2}}{2} 22 − 3 2 -\frac{\sqrt{3}}{2} 23 − 1 -1 1 − 3 2 -\frac{\sqrt{3}}{2} 23 − 2 2 -\frac{\sqrt{2}}{2} 22 − 1 2 -\frac{1}{2} 21 0 0 0 1 2 \frac{1}{2} 21 2 2 \frac{\sqrt{2}}{2} 22 3 2 \frac{\sqrt{3}}{2} 23 1 1 1
tg α \text{tg}\alpha tgα 0 0 0 1 3 \frac{1}{\sqrt{3}} 3 1 1 1 1 3 \sqrt{3} 3 - − 3 -\sqrt{3} 3 − 1 -1 1 − 1 3 -\frac{1}{\sqrt{3}} 3 1 0 0 0 1 3 \frac{1}{\sqrt{3}} 3 1 1 1 1 3 \sqrt{3} 3 - − 3 -\sqrt{3} 3 − 1 -1 1 − 1 3 -\frac{1}{\sqrt{3}} 3 1 0 0 0
ctg α \text{ctg}\alpha ctgα- 3 \sqrt{3} 3 1 1 1 1 3 \frac{1}{\sqrt{3}} 3 1 0 0 0 − 1 3 -\frac{1}{\sqrt{3}} 3 1 − 1 -1 1 − 3 -\sqrt{3} 3 - 3 \sqrt{3} 3 1 1 1 1 3 \frac{1}{\sqrt{3}} 3 1 0 0 0 − 1 3 -\frac{1}{\sqrt{3}} 3 1 − 1 -1 1 − 3 -\sqrt{3} 3 -

Filed Under: CBSE


Super magic Hexagon for Trigonometric identities Tricks

三角恒等式的超级魔法六边形技巧

~ Durai, Kugan

The super hexagon is a special diagram that helps the children to remember all the trigonometric identities and trigonometric functions visually [also requires memory].
超级六边形是一种特殊的图表,它可以帮助孩子们通过视觉记忆所有三角恒等式和三角函数(也需要记忆)。

How to draw the super hexogen
如何绘制超级六边形

Draw the hexagon and we need to join all the opposite vertices and place the value 1 in the center of the hexagon.
绘制六边形,并连接所有对角顶点,在六边形中心放置值 1。

img

Write the tan on the left vertex of the hexagon and use the quotient to identify the tangent ongoing clockwise, starting with tan ⁡ = sin ⁡ cos ⁡ \tan = \frac{\sin}{\cos} tan=cossin.
在六边形的左顶点写上 tan,并使用商来标识顺时针方向的正切,从 tan ⁡ = sin ⁡ cos ⁡ \tan = \frac{\sin}{\cos} tan=cossin 开始。

Then add:
然后添加:

  • cot ⁡ \cot cot (which is cotangent) on the opposite side of the hexagon to tan ⁡ \tan tan
    cot ⁡ \cot cot(即余切)在六边形的对面,与 tan ⁡ \tan tan 对应

  • csc ⁡ \csc csc (which is cosecant) next, and
    csc ⁡ \csc csc(即正割)接下来,

  • sec ⁡ \sec sec (which is secant) last
    sec ⁡ \sec sec(即正割)最后

Fill the reciprocal identities on the opposite side. Now the super magic hexagon is ready
在对面填写倒数恒等式。现在超级魔法六边形已经准备好了。

img

Create Quotient identities
创建商恒等式

To understand the first set of formulae will let try around the hexagon in the clockwise direction, for the next set of directions will let try around the hexagon in the anti-clockwise direction.
为了理解第一组公式,让我们尝试围绕六边形顺时针方向进行,对于下一组方向,我们将尝试围绕六边形逆时针方向进行。

img

img

Now we take any three continuing functions in the hexagon like tan ⁡ \tan tan, sin ⁡ \sin sin, and cos ⁡ \cos cos. If the product of the first and the third functions results in the function between them.
现在我们取六边形中的任意三个连续函数,如 tan ⁡ \tan tan sin ⁡ \sin sin cos ⁡ \cos cos。如果第一个和第三个函数的乘积结果为它们之间的函数。

img

Now focus on the function diagonally opposite vertices. They are reciprocal of each other.
现在关注对角顶点的函数。它们互为倒数。

img

Focus the hexagon we found the six triangles. Focus only three triangle which s shadow in the image. Here we go clockwise within each one of the triangles starting with top left position. Square of the sum top two point of the triangle is equal to square off the bottom point of the triangle.
关注六边形,我们发现了六个三角形。只关注图像中阴影的三个三角形。在这里,我们从左上角位置开始,在每个三角形内顺时针进行。三角形顶部两个点的和的平方等于三角形底部点的平方。

img

Anti-clock wise
Here we go anti-clockwise within each one of the triangles starting with top left position. Square of the subtraction top two point of the triangle is equal to square off the bottom point of the triangle
逆时针方向
在这里,我们从左上角位置开始,在每个三角形内逆时针进行。三角形顶部两个点的差的平方等于三角形底部点的平方

img

“counter - clockwise” 和 “anti - clockwise” 都有“逆时针”的意思,但存在一些区别:

  • counter - clockwise:“counter -” 前缀表示“反对、相反” ,强调与顺时针方向相反 ,更侧重于描述一种方向上的反向性。
    美式英语中常用的表达 。比如在描述机械部件的转动方向、物体的旋转方向等场景中经常使用 。例如:“The fan rotates counter - clockwise.(风扇逆时针旋转。 )”

  • anti - clockwise:“anti -” 前缀表示“反对、对抗、防止” ,表示与时钟转动方向相反 ,语义上更强调与常规顺时针方向的对抗。

    英式英语中常用的表达。在英国及一些英联邦国家的日常生活、学术、工程等领域描述逆时针方向时较为常用 。例如:“Turn the knob anti - clockwise to reduce the volume.(逆时针转动旋钮来减小音量。 )”


via:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值