注:本文为 “微积分 | 积分性质” 相关合辑。
英文引文,机翻未校。
如有内容异常,请看原文。
csdn 篇幅所限,本文共两部分。
微积分 | 积分性质——定义、推导与证明 第一部分
Integral Properties – Definition, Process, and Proof
积分性质——定义、推导与证明
Learning about the integral properties is essential if we want to evaluate integrals faster. These properties come in handy when we need to strategically manipulate expressions when proving inequalities and confirming equations.
如果我们想更快地计算积分,了解积分性质至关重要。当我们需要通过巧妙地变形表达式来证明不等式或验证等式时,这些性质会非常有用。
Mastering the integral properties will help when working with complex integrals. Learning how to prove them also shows how closely related derivatives and integrals are with each other.
掌握积分性质有助于处理复杂积分。学习这些性质的证明过程,还能体现出导数与积分之间的紧密联系。
In this article, we’ll study the common properties of indefinite and definite integrals.We’ll begin by understanding the three fundamental properties of indefinite integrals. We can then move on to exploring more complex properties for definite integrals. Our discussion is going to be thorough, so take your time absorbing each section before moving on to the next. Are you ready? Let’s go ahead and dive in!
在本文中,我们将学习不定积分和定积分的常见性质。我们将从理解不定积分的三个基本性质开始,然后再探讨定积分的更复杂性质。我们的讨论将会很详尽,因此在进入下一部分之前,请慢慢消化每个部分的内容。准备好了吗?让我们开始深入学习吧!
What are the properties of integrals?
积分的性质是什么?
The properties of integrals help us in evaluating indefinite and definite integrals of functions that contain multiple terms. These properties will also help break down definite integrals so that we can evaluate them more efficiently.
积分的性质有助于我们计算包含多个项的函数的不定积分和定积分。这些性质还能帮助我们拆分定积分,从而更高效地进行计算。
Recall that when we differentiate complex functions, we use properties to simplify our process
回想一下,当我们对复杂函数求导时,会利用性质来简化过程(ie 例如
d
d
x
k
⋅
f
(
x
)
=
k
d
d
x
f
(
x
)
\dfrac{d}{dx} k\cdot f(x) = k \dfrac{d}{dx} f(x)
dxdk⋅f(x)=kdxdf(x)).
We use similar properties to simplify process of evaluating indefinite and definite integrals.
我们也会使用类似的性质来简化不定积分和定积分的计算过程。
Let’s say we have the following real numbers:
a
a
a,
b
b
b,
k
k
k,
A
A
A, and
B
B
B. Given that
f
(
x
)
f(x)
f(x) and
g
(
x
)
g(x)
g(x) are integrable over the interval,
[
a
,
b
]
[a, b]
[a,b], the functions will satisfy the following properties for indefinite integrals:
假设我们有实数
a
a
a、
b
b
b、
k
k
k、
A
A
A 和
B
B
B。已知函数
f
(
x
)
f(x)
f(x) 和
g
(
x
)
g(x)
g(x) 在区间
[
a
,
b
]
[a, b]
[a,b] 上可积,则它们满足以下不定积分性质:
Properties of Indefinite Integrals 不定积分的性质 | |
---|---|
Constant Multiple Property 常数因子性质 | ∫ k ⋅ f ( x ) d x = k ∫ f ( x ) d x \int k \cdot f(x) dx = k \int f(x) dx ∫k⋅f(x)dx=k∫f(x)dx |
Sum Property 和性质 | ∫ [ f ( x ) + g ( x ) ] d x = ∫ f ( x ) d x + ∫ g ( x ) d x \int [f(x) + g(x)]dx = \int f(x) dx + \int g(x) dx ∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx |
Difference Property 差性质 | ∫ [ f ( x ) – g ( x ) ] d x = ∫ f ( x ) d x – ∫ g ( x ) d x \int [f(x) – g(x)]dx = \int f(x) dx – \int g(x) dx ∫[f(x)–g(x)]dx=∫f(x)dx–∫g(x)dx |
The sum and difference properties extend to definite integrals as well. Below are essential properties that we’ll need when simplifying expressions with definite integrals.
和性质与差性质也适用于定积分。下面是简化定积分表达式时所需的重要性质:
Properties of Definite Integrals 定积分的性质 | |
---|---|
Sum or Difference 和或差性质 | ∫ a b [ f ( x ) ± g ( x ) ] d x = ∫ a b f ( x ) d x ± ∫ a b g ( x ) d x \int_{a}^{b} [f(x) \pm g(x)]dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx ∫ab[f(x)±g(x)]dx=∫abf(x)dx±∫abg(x)dx |
Constant Multiple 常数因子性质 | ∫ a b [ k ⋅ f ( x ) ] d x = k ∫ a b f ( x ) d x \int_{a}^{b} [k\cdot f(x)]dx = k\int_{a}^{b} f(x) dx ∫ab[k⋅f(x)]dx=k∫abf(x)dx |
Reverse Interval 区间反转性质 | ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x) dx ∫abf(x)dx=−∫baf(x)dx |
Zero-length Interval 零长度区间性 | ∫ a a f ( x ) d x = 0 \int_{a}^{a} f(x)dx = 0 ∫aaf(x)dx=0 |
Combining Intervals 区间合并性质 | ∫ a b f ( x ) d x + ∫ b c f ( x ) d x = ∫ a c f ( x ) d x \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx ∫abf(x)dx+∫bcf(x)dx=∫acf(x)dx |
Comparison Property 比较性质 | i) When
f
(
x
)
≥
0
f(x) \geq 0
f(x)≥0 for
x
∈
[
a
,
b
]
x \in [a, b]
x∈[a,b],
∫
a
b
f
(
x
)
d
x
≥
0
\int_{a}^{b} f(x)dx \geq 0
∫abf(x)dx≥0. i) 若对于 x ∈ [ a , b ] x \in [a, b] x∈[a,b],有 f ( x ) ≥ 0 f(x) \geq 0 f(x)≥0,则 ∫ a b f ( x ) d x ≥ 0 \int_{a}^{b} f(x)dx \geq 0 ∫abf(x)dx≥0。 ii) When f ( x ) ≥ g ( x ) f(x) \geq g(x) f(x)≥g(x) for x ∈ [ a , b ] x \in [a, b] x∈[a,b], ∫ a b f ( x ) d x ≥ ∫ a b f ( x ) d x \int_{a}^{b} f(x)dx \geq \int_{a}^{b} f(x)dx ∫abf(x)dx≥∫abf(x)dx. iii) When m ≤ f ( x ) ≤ M m \leq f(x) \leq M m≤f(x)≤M and x ∈ [ a , b ] x\in [a, b] x∈[a,b], m ( b – a ) ≤ ∫ a b f ( x ) d x ≤ M ( b – a ) m(b – a) \leq \int_{a}^{b} f(x) dx \leq M(b –a) m(b–a)≤∫abf(x)dx≤M(b–a). |
We’ll show you how to apply these indefinite and definite integral properties. We’ll also show you how some of these properties were derived. Before we move to the next part of our discussion, review all nine properties once again. When you’re ready, let’s move on to understanding how these properties were derived.
我们将向你展示如何应用这些不定积分和定积分性质,还会介绍其中一些性质的推导过程。在进入讨论的下一部分之前,请再次复习这九条性质。准备好后,我们就来理解这些性质是如何推导出来的。
How to apply the different integral properties?
如何应用不同的积分性质?
The best way to understand and master these integral properties is by learning the conditions required by these properties and knowing the best time to apply them. We’ll break down the steps for each property and show you examples of how each of these properties is applied.
理解和掌握这些积分性质的最佳方法是了解每个性质的适用条件,并知道何时应用它们最合适。我们将分解每个性质的应用步骤,并通过例子展示每个性质的具体应用。
Understanding the constant multiple property of integrals
理解积分的常数因子性质
The constant multiple property applies to both indefinite and definite integrals. This means that when we’re evaluating the integral of a function,
f
(
x
)
\boldsymbol{f(x)}
f(x), and a constant factor,
c
\boldsymbol{c}
c, the resulting expression is simply equal to the product of the constant and the integral****of
f
(
x
)
\boldsymbol{f(x)}
f(x).
常数因子性质同时适用于不定积分和定积分。这意味着当我们计算一个函数
f
(
x
)
\boldsymbol{f(x)}
f(x) 与一个常数因子**
c
\boldsymbol{c}
c** 的积分时,结果等于该常数与**
f
(
x
)
\boldsymbol{f(x)}
f(x)** 的积分的乘积**。
∫ k ⋅ f ( x ) d x = k ∫ f ( x ) d x ∫ a b k ⋅ f ( x ) d x = k ∫ a b f ( x ) d x \begin{aligned} \int {\color{Teal} k}\cdot {{\color{DarkOrange} f(x)}}dx &= {\color{Teal}k}\int {{\color{DarkOrange} f(x)}}dx\\ \int_{a}^{b} {\color{Teal} k}\cdot {{\color{DarkOrange} f(x)}}dx &= {\color{Teal}k}\int_{a}^{b} {{\color{DarkOrange} f(x)}}dx\end{aligned} ∫k⋅f(x)dx∫abk⋅f(x)dx=k∫f(x)dx=k∫abf(x)dx
Let’s go ahead and apply this property to simplify the integral shown below. Make sure to review your knowledge of antiderivative formulas here or bring out your notes since we’ll be applying them to simplify the expression.
让我们应用这个性质来简化下面的积分。请确保复习了这里的原函数公式,或拿出你的笔记,因为我们将用这些公式来简化表达式。
This means that if we have
这意味着,如果我们有
∫
−
3
x
2
d
x
\int -3x^2 dx
∫−3x2dx,
we can factor out
−
3
-3
−3 then simply evaluate
∫
x
2
d
x
\int x^2dx
∫x2dx using the power rule,
可以提出
−
3
-3
−3,然后利用幂函数积分法则
∫
x
n
d
x
=
x
n
+
1
n
+
1
+
C
\int x^n dx = \dfrac{x^{n + 1}}{n +1} + C
∫xndx=n+1xn+1+C.
来计算
∫
x
2
d
x
\int x^2dx
∫x2dx。
∫ − 3 ⋅ x 2 d x = − 3 ∫ x 2 d x = − 3 ( x 2 + 1 2 + 1 ) + C = − 3 ⋅ x 3 3 + C = − x 3 + C \begin{aligned} \int {\color{Teal} -3}\cdot {{\color{DarkOrange} x^2}}dx &= {\color{Teal}-3}\int {{\color{DarkOrange} x^2}}dx\\&= -3 \left(\dfrac{x^{2 + 1}}{2 + 1}\right ) + C\\&=-3 \cdot \dfrac{x^3}{3} + C\\&= -x^3 + C\end{aligned} ∫−3⋅x2dx=−3∫x2dx=−3(2+1x2+1)+C=−3⋅3x3+C=−x3+C
We can also apply a similar process when evaluating definite integrals. Just keep in mind that according to the fundamental theorem of calculus, we have
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
–
F
(
a
)
\int_{a}^{b} f(x)dx = F(b) – F(a)
∫abf(x)dx=F(b)–F(a), where
F
(
x
)
F(x)
F(x) is the antiderivative of
f
(
x
)
f(x)
f(x).
计算定积分时,我们也可以采用类似的过程。只需记住,根据微积分基本定理,
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
\int_{a}^{b} f(x)dx = F(b) - F(a)
∫abf(x)dx=F(b)−F(a),其中
F
(
x
)
F(x)
F(x) 是
f
(
x
)
f(x)
f(x) 的原函数。
Understanding the sum and difference properties of integrals
理解积分的和与差性质
These two properties tell us that if a function can be broken down as a sum or difference of simpler functions, we can find the function’s integral by adding or subtracting the integrals of the simpler functions.
这两个性质告诉我们,如果一个函数可以分解为更简单函数的和或差,我们可以通过将这些简单函数的积分相加或相减来得到原函数的积分。
∫ [ f ( x ) ± g ( x ) ] d x = ∫ f ( x ) d x ± ∫ g ( x ) d x ∫ a b [ f ( x ) ± g ( x ) ] d x = ∫ a b f ( x ) d x ± ∫ a b g ( x ) d x \begin{aligned} \int [{\color{Teal} f(x)} \pm {{\color{DarkOrange} g(x)}}]dx &= \int {\color{Teal}f(x)} dx\pm \int {{\color{DarkOrange} g(x)}}dx\\\int_{a}^{b} [{\color{Teal} f(x)} \pm {{\color{DarkOrange} g(x)}}]dx &= \int_{a}^{b} {\color{Teal}f(x)}dx \pm \int_{a}^{b} {{\color{DarkOrange} g(x)}}dx\end{aligned} ∫[f(x)±g(x)]dx∫ab[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx=∫abf(x)dx±∫abg(x)dx
We’ll show you two examples: one is an application of the sum property on an indefinite integral and the second is an application of the difference on a definite integral.
我们将展示两个例子:一个是和性质在不定积分中的应用,另一个是差性质在定积分中的应用。
Indefinite Integral 不定积分 | ∫ 2 x 2 + x = ∫ ( 2 x 2 + x ) d x = ∫ 2 x 2 d x + ∫ x d x = 2 ∫ x 2 d x + ∫ x d x , Constant Multiple Property 常数因子性质 = 2 ( x 2 + 1 2 + 1 ) + x 1 + 1 1 + 1 + C , Power Rule 幂函数法则 = 2 x 3 3 + x 2 2 + C \begin{aligned} \int 2x^2 + x&= \int ({\color{Teal} 2x^2} + {{\color{DarkOrange} x}})dx\\ &= \int {\color{Teal}2x^2}dx + \int {{\color{DarkOrange} x}}dx\\&= {\color{Teal}2}\int x^2dx + \int x dx,{\color{Teal}\text{Constant Multiple Property 常数因子性质}}\\&= 2{\color{Teal}\left(\dfrac{x^{2 + 1}}{2 + 1} \right )} + {\color{Teal}\dfrac{x^{1 + 1}}{1 + 1} }+ C,\color{Teal}\text{Power Rule 幂函数法则}\\&= \dfrac{2x^3}{3} + \dfrac{x^2}{2} + C\end{aligned} ∫2x2+x=∫(2x2+x)dx=∫2x2dx+∫xdx=2∫x2dx+∫xdx,Constant Multiple Property 常数因子性质=2(2+1x2+1)+1+1x1+1+C,Power Rule 幂函数法则=32x3+2x2+C |
---|---|
Definite Integral 定积分 | ∫ 0 4 3 x 2 – 6 x = ∫ 0 4 ( 3 x 2 – 6 x ) d x = ∫ 0 4 3 x 2 d x – ∫ 0 4 6 x d x = 3 ∫ x 2 d x – 6 ∫ x d x , Constant Multiple Property 常数因子性质 = 3 ( x 2 + 1 2 + 1 ) – 6 ( x 1 + 1 1 + 1 ) + C , Power Rule 幂函数法则 = 3 x 3 3 – 6 x 2 2 + C = x 3 – 3 x 2 + C \begin{aligned} \int_{0}^{4} 3x^2 – 6x&= \int_{0}^{4} ({\color{Teal} 3x^2} – {{\color{DarkOrange} 6x}})dx\\ &= \int_{0}^{4} {\color{Teal}3x^2}dx – \int_{0}^{4} {{\color{DarkOrange} 6x}}dx\\&= {\color{Teal}3}\int x^2dx – {\color{Teal}6}\int x dx,{\color{Teal}\text{Constant Multiple Property 常数因子性质}}\\&= 3{\color{Teal}\left(\dfrac{x^{2 + 1}}{2 + 1} \right )} – 6\left({\color{Teal}\dfrac{x^{1 + 1}}{1 + 1} }\right )+ C,\color{Teal}\text{Power Rule 幂函数法则}\\&= \dfrac{3x^3}{3} – \dfrac{6x^2}{2} + C\\&=x^3 – 3x^2 + C\end{aligned} ∫043x2–6x=∫04(3x2–6x)dx=∫043x2dx–∫046xdx=3∫x2dx–6∫xdx,Constant Multiple Property 常数因子性质=3(2+1x2+1)–6(1+1x1+1)+C,Power Rule 幂函数法则=33x3–26x2+C=x3–3x2+C |
This property is quite similar to the addition and subtraction rules for differentiation and this makes since integration and differentiation are closely related to each other. Use a similar process to prove the different properties of definite and indefinite integrals.
这个性质与微分的加减法则非常相似,这是因为积分和微分本身就密切相关。可以采用类似的方法来证明定积分和不定积分的其他性质。
Understanding the properties helpful in manipulating definite integrals
理解有助于处理定积分的性质
Let’s now understand how to apply the three properties: reversal interval, combining interval, and zero-length interval properties. The three properties focus on how the upper and lower limits affect a definite integral’s value.
现在我们来理解如何应用三个性质:区间反转性质、区间合并性质和零长度区间性质。这三个性质关注的是上下限如何影响定积分的值。
-
Using the reverse interval property, we can rewrite the definite integral of a function as the negative definite integral of the same function when we reverse the positions of its lower and upper limits.
利用区间反转性质,当我们交换定积分的上下限时,可以将该函数的定积分改写为同一函数定积分的相反数。
∫ a b f ( x ) d x = − ∫ b a f ( x ) d x \begin{aligned}\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x) dx\end{aligned} ∫abf(x)dx=−∫baf(x)dx
-
When the lower and upper limits of a function’s definite integral are equal, its value is equal to zero. We call this the zero-length interval property.
当一个函数定积分的上下限相等时,其值等于零。我们称之为零长度区间性质。
∫ a a f ( x ) d x = 0 \begin{aligned}\int_{a}^{a} f(x)dx = 0\end{aligned} ∫aaf(x)dx=0
-
Through the combining interval property, we can combine two or more definite integrals sharing the same function. This can be possible the two definite integrals being combined have identical upper and lower limits.
通过区间合并性质,我们可以合并两个或多个具有相同被积函数的定积分。前提是这两个要合并的定积分有相同的衔接上下限(即前一个积分的上限是后一个积分的下限)。
∫ a b f ( x ) d x + ∫ b c f ( x ) d x = ∫ a c f ( x ) d x \begin{aligned}\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx\end{aligned} ∫abf(x)dx+∫bcf(x)dx=∫acf(x)dx
Here are examples of definite integrals where we can use each of these properties to simplify the expressions shown below.
下面是一些定积分的例子,我们可以用上述每个性质来简化这些表达式。
Reverse Interval 区间反转 | ∫ 0 4 4 x d x = − ∫ 4 0 4 x d x ∫ − 2 2 ( 5 x 2 − 1 ) d x = − ∫ 2 − 2 ( 5 x 2 − 1 ) d x ∫ − 1 4 x 2 − 1 x + 3 d x = − ∫ 4 − 1 x 2 − 1 x + 3 d x \begin{aligned} \int_{0}^{4} 4x dx&= -\int_{4}^{0} 4xdx \\\int_{-2}^{2} (5x^2 -1) dx&= -\int_{2}^{-2} (5x^2 -1) dx\\\int_{-1}^{4} \dfrac{x^2 -1}{x + 3} dx&= -\int_{4}^{-1} \dfrac{x^2 -1}{x + 3} dx\end{aligned} ∫044xdx∫−22(5x2−1)dx∫−14x+3x2−1dx=−∫404xdx=−∫2−2(5x2−1)dx=−∫4−1x+3x2−1dx |
---|---|
Zero-Length Interval 零长度区间 | ∫ 4 4 ( 4 x – 3 ) d x = 0 ∫ 2 2 x 2 – 4 x + 4 d x = 0 ∫ − 3 − 3 1 x 2 + 1 d x = 0 \begin{aligned}\int_{4}^{4} (4x – 3)dx &= 0\\\int_{2}^{2} \sqrt{x^2 – 4x + 4}dx &= 0\\\int_{-3}^{-3}\dfrac{1}{x^2 +1} dx &= 0\end{aligned} ∫44(4x–3)dx∫22x2–4x+4dx∫−3−3x2+11dx=0=0=0 |
Combining Interval 区间合并 | ∫ − 2 0 ( 2 x + 5 ) d x + ∫ 0 2 ( 2 x + 5 ) d x = ∫ − 2 2 ( 2 x + 5 ) d x ∫ − 4 2 x + 4 d x + ∫ 2 4 x + 4 d x = ∫ − 4 4 x + 4 d x ∫ 2 5 x x 2 + 4 d x + ∫ 5 10 x x 2 + 4 d x = ∫ 2 10 x x 2 + 4 d x \begin{aligned}\int_{-2}^{0} (2x + 5)dx + \int_{0}^{2} (2x + 5)dx&= \int_{-2}^{2} (2x + 5)dx\\\int_{-4}^{2} \sqrt{x+ 4}dx + \int_{2}^{4} \sqrt{x+ 4} dx&= \int_{-4}^{4} \sqrt{x+ 4} dx\\ \int_{2}^{5} \dfrac{x}{x^2 + 4} dx + \int_{5}^{10} \dfrac{x}{x^2 + 4} dx&= \int_{2}^{10} \dfrac{x}{x^2 + 4} dx \end{aligned} ∫−20(2x+5)dx+∫02(2x+5)dx∫−42x+4dx+∫24x+4dx∫25x2+4xdx+∫510x2+4xdx=∫−22(2x+5)dx=∫−44x+4dx=∫210x2+4xdx |
There are instances when we need to manipulate intervals and positions on the integrals’ lower and upper limits in order for us to evaluate definite integrals. Knowing these three properties by heart will also fasten the time it takes us to evaluate complex definite integrals.
在有些情况下,为了计算定积分,我们需要调整积分区间和上下限的位置。熟记这三个性质也能加快我们计算复杂定积分的速度。
Understanding the comparison property of integrals
理解积分的比较性质
We’ll now work on properties that involve comparing the definite integrals using inequalities.
现在我们来学习涉及用不等式比较定积分的性质。
-
When the function is above or along the x \boldsymbol{x} x-axis throughout the interval, [ a , b ] [a, b] [a,b], then the definite integral of f ( x ) \boldsymbol{f(x)} f(x) throughout this interval will always be positive.
当函数在整个区间 [ a , b ] [a, b] [a,b] 上位于 x 轴上方或 x 轴上时,则该函数 f ( x ) \boldsymbol{f(x)} f(x) 在这个区间上的定积分始终为正。
f ( x ) ≥ 0 ⇒ ∫ a b f ( x ) d x ≥ 0 \begin{aligned}f(x) &\geq 0\\ \Rightarrow \int_{a}^{b} f(x) dx &\geq 0\end{aligned} f(x)⇒∫abf(x)dx≥0≥0
-
If the function, f ( x ) \boldsymbol{f(x)} f(x), is lying below the function, g ( x ) \boldsymbol{g(x)} g(x), within the interval of [ a , b ] [a, b] [a,b], the f ( x ) \boldsymbol{f(x)} f(x)‘s definite integral will be less than that of g ( x ) \boldsymbol{g(x)} g(x)‘s definite integrals when they share the same lower and upper limits: x = a x =a x=a and x = b x =b x=b, respectively.
若函数 f ( x ) \boldsymbol{f(x)} f(x) 在区间 [ a , b ] [a, b] [a,b] 上位于函数 g ( x ) \boldsymbol{g(x)} g(x) 的下方,则当它们具有相同的上下限(分别为 x = a x = a x=a 和 x = b x = b x=b)时, f ( x ) \boldsymbol{f(x)} f(x) 的定积分小于** g ( x ) \boldsymbol{g(x)} g(x)** 的定积分**。
f ( x ) ≤ g ( x ) ⇒ ∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x \begin{aligned}f(x) &\leq g(x)\\ \Rightarrow \int_{a}^{b} f(x) dx &\leq \int_{a}^{b} g(x) dx \end{aligned} f(x)⇒∫abf(x)dx≤g(x)≤∫abg(x)dx
-
Use the fact that m \boldsymbol{m} m and M \boldsymbol{M} M are the minimum and maximum values possible for f ( x ) \boldsymbol{f(x)} f(x) throughout the interval, [ a , b ] [a, b] [a,b]. The definite integral of f ( x ) \boldsymbol{f(x)} f(x) throughout the interval will have a minimum and maximum values of m ( b – a ) \boldsymbol{m(b –a)} m(b–a) and M ( b – a ) \boldsymbol{M(b –a)} M(b–a), respectively.
已知 m \boldsymbol{m} m 和 M \boldsymbol{M} M 是函数 f ( x ) \boldsymbol{f(x)} f(x) 在区间 [ a , b ] [a, b] [a,b] 上的最小值和最大值,则该函数在这个区间上的定积分的最小值和最大值分别为** m ( b − a ) \boldsymbol{m(b - a)} m(b−a)** 和 M ( b − a ) \boldsymbol{M(b - a)} M(b−a)。
m ≤ f ( x ) ≤ M ⇒ m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b – a ) \begin{aligned} m\leq f(x) &\leq M\\ \Rightarrow m(b -a) \leq \int_{a}^{b} f(x) dx &\leq M(b – a)\end{aligned} m≤f(x)⇒m(b−a)≤∫abf(x)dx≤M≤M(b–a)
For example, we can use the second inequality to prove that
∫
0
1
1
+
x
2
d
x
≤
∫
0
1
1
+
x
d
x
\int_{0}^{1} \sqrt{1 + x^2} dx \leq \int_{0}^{1} \sqrt{1 + x}dx
∫011+x2dx≤∫011+xdx.
例如,我们可以用第二个不等式来证明
∫
0
1
1
+
x
2
d
x
≤
∫
0
1
1
+
x
d
x
\int_{0}^{1} \sqrt{1 + x^2} dx \leq \int_{0}^{1} \sqrt{1 + x}dx
∫011+x2dx≤∫011+xdx。
csdn 篇幅所限,未完待续,请看第二部分
- 微积分 | 积分性质——定义、推导与证明 第二部分-CSDN博客
https://blog.csdn.net/u013669912/article/details/150057692 - Integral Properties - Definition, Process, and Proof
https://www.storyofmathematics.com/integral-properties/