Winner Tree-胜者树

胜者树是一种数据结构,特点如下:
  1. 它是一棵完全二叉树。也就是说,除最后一层外,每一层上的节点数均达到最大值;在最后一层上只缺少右边的若干结点。
  2. 这棵树的所有叶子结点是原始数据(见下文样例)。
  3. 对于所有非叶子结点,取两个儿子中更优秀的值,就是父亲结点的值,故名胜者树。
  4. 由于胜者树是完全二叉树,因此如果把根结点编号为1,第二层的结点分别是2、3,第三层是4、5、6、7……那么我们就能发现:每一个非叶子结点的左儿子编号都是它的编号乘以2,右儿子编号是它的编号乘以2加上1。
好吧,如果你像我一样不喜欢看大堆的文字,那就撇开理论知识,我们先来看一个例子。
Winner Tree-胜者树 - 卢凯宾 - 石门实验中学卢凯宾的博客
如上图,我们有原始数列a={4,2,9,1},两两比对,优秀者成为更高层的结点。可知根结点的值就是原始数据中最优秀的值。容易推算,建树的时间复杂度仅为O(n)。程序如下:
void build_tree ( int _left , int _right , int _node ) {
	if ( _left == _right ) tree[_node].value = a[_left] ;
		else {
			int _middle = ( _left + _right ) >> 1 ;
			int l_child = _node << 1 ;
			int r_child = l_child + 1 ;
			
			build_tree ( _left , _middle , l_child ) ;
			build_tree ( _middle+1 , _right , r_child ) ;
			tree[_node] = _cmp ( tree[l_child] , tree[r_child] ) ? tree[l_child] : tree[r_child] ;
		}
	return ;
} //初始建树调用build_tree(1,n,1)
但是!还有但是!如果只是这样的话,那效率和直接全部找一遍不是一样?优势何在??
胜者树可以帮助我们快速找到数据中根据某一个规则决定的最优者,而且还可以快速修改。为什么这么说呢?我们再来看一个例子。
Winner Tree-胜者树 - 卢凯宾 - 石门实验中学卢凯宾的博客
如上图,当我们把2修改为5时,其相应的父结点也要重新判断并更新一遍。而其它没有受到影响的结点则并不会被访问。从根结点开始,判断要被修改的是左子树还是右子树,不断向下,直到最后一层。修改完之后回溯,顺便维护。
时间复杂度相当于二分,只需O(logN)。程序如下:
 void _insert ( int _left , int _right , int _k , int new_value , int _node ) {
	if ( _left == _right )
		tree[_node].value = a[_left] ;
	else {
		int _middle = (_left+_right) >> 1 ;
		int l_child = _node << 1 ;
		int r_child = l_child + 1 ;
		
		if ( _k <= _middle )
			_insert ( _left , _middle , _k , new_value , l_child ) ;
		else
			_insert ( _middle+1 , _right , _k , new_value , r_child ) ;
		
		tree[_node] = _cmp ( tree[l_child] , tree[r_child] ) ? tree[l_child] : tree[r_child] ;
	}
	return ;
} //初始调用_insert(1,n,k,value,1) 
 
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013686535/article/details/52141647
上一篇推销员
下一篇poj3264 -- Balanced Lineup
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭