这题也是个好题,做法挺多的。
做法一:暴力算。
时间复杂度:
O(n×len)
。
得分:40。
代码:
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
using namespace std;
int calc(int x) {
int sum = 0;
while (x) {
sum += x % 10;
x /= 10;
}
return sum;
}
int n;
int main(void) {
freopen("1772.in", "r", stdin);
freopen("1772.out", "w", stdout);
scanf("%d", &n);
int ans = 0;
for (int i = 1; i <= n; i++) ans += calc(i);
printf("%d\n", ans);
return 0;
}
做法二:
其实[0,9],[0,99],[0,999]……这些都是有规律可循的。那么可以把前面这段有规律的算出来,后面多出来的部分再暴力。
前面的规律是:[0,9]时1~9各出现1次(0对总和不作贡献,不予考虑,下同)
[0,99]时,个位1~9各出现10次,十位1~9各出现10次,总计各出现20次
[0,999]时,根据乘法原理,个位1~9各出现10*10=100次,十位和百位同理,总计各出现300次
于是不难得到,对于
[0,10k−1]
,数字1~9的出现次数都为
k×10k−1
。
然而,剩下部分的暴力却也是比较麻烦的,因为
n
最大为
时间复杂度:
O(n−10⌊lgn⌋)
。
得分:40。
代码:
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
using namespace std;
int calc(int x) {
int sum = 0;
while (x) {
sum += x % 10;
x /= 10;
}
return sum;
}
int n;
int main(void) {
freopen("1772.in", "r", stdin);
freopen("1772.out", "w", stdout);
scanf("%d", &n);
if (n <= 99) { //小数据单独讨论一下
int ans = 0;
for (int i = 1; i <= n; i++) ans += calc(i);
printf("%d\n", ans);
return 0;
}
int cnt = 1, Pow = 1;
int i;
for (i = 9; i <= n; ) {
if (i * 10 + 9 > n) break; else i = i * 10 + 9;
Pow *= 10;
cnt = cnt * 10 + Pow;
}
//printf("%d\n", cnt);
int ans = 0;
for (int i = 1; i < 10; i++) ans += cnt * i;
for (int j = i + 1; j <= n; j++) ans += calc(j);
printf("%d\n", ans);
return 0;
}
但其实我们都很明白,数据这么大,凡是线性时间的做法都是耍流氓。正解只能是常数时间。
正解:
可以根据位数对给定数字进行分解,以34567为例:
先考虑
n
个数中个位上分别是1~9的个数,先来看34560,显然34560里个位是1的数有3456个,2到9也是3456个。
那么没统计的数字就是34560,34561,34562,34563,34564,34565,34566,34567这8个,显然个位是1~7的又各增加1个。
再来看十位:类似的来看34500,则十位是1~9的数各有3450个,剩下还有34501~34567,则十位是1~5的个数分别增加10个,十位是6的增加8个。
以此类推。
时间复杂度:
得分:100。
重点部分:
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <iostream>
using namespace std;
int getws(int x) {
int ret = 0;
while (x) {
x /= 10;
++ret;
}
return ret;
}
int n;
long long cnt[10];
int main(void) {
freopen("1772.in", "r", stdin);
freopen("1772.out", "w", stdout);
scanf("%d", &n);
int ws = getws(n); //求出位数
long long Pow = 1; //p=10^k,当然这个k没有显式保存
//下面以k=2推算,也就是考虑十位的情况
while (ws--) {
Pow *= 10;
long long t = n / Pow * Pow; //相当于把最后k位清0,例如34567,这里得到34500
for (int i = 1; i < 10; i++) //这部分是统一的,都能增加3450个。
//因为当十位确定之后,前面五位有345种,后面个位为0~9,所以根据乘法原理共3450种
cnt[i] += t / 10;
t = n - t; //多出来的部分:34567-34500=67
long long x = t / (Pow / 10); //得到十位最大为6
for (int i = 1; i < x; i++) //对于前面的1~5,它后面的k-1位还是可以任意取的
cnt[i] += Pow / 10;
cnt[x] += t - x * (Pow / 10) + 1; //而十位为6就最多只能取0~7这8种
}
long long ans = 0;
for (int i = 0; i < 10; i++) ans += cnt[i] * i;
printf("%lld\n", ans);
return 0;
}
想的时候比较直观,当然写起代码来有些式子要推还是感觉有点烦。。编程要有耐心,恒心,毅力!!!