[SMOJ1772]数页码


这题也是个好题,做法挺多的。

做法一:暴力算。
时间复杂度: O(n×len)
得分:40。
代码:

#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>

using namespace std;

int calc(int x) {
    int sum = 0;
    while (x) {
        sum += x % 10;
        x /= 10;
    }
    return sum;
}

int n;

int main(void) {
    freopen("1772.in", "r", stdin);
    freopen("1772.out", "w", stdout);

    scanf("%d", &n);
    int ans = 0;
    for (int i = 1; i <= n; i++) ans += calc(i);

    printf("%d\n", ans);

    return 0;
}


做法二:
其实[0,9],[0,99],[0,999]……这些都是有规律可循的。那么可以把前面这段有规律的算出来,后面多出来的部分再暴力。
前面的规律是:[0,9]时1~9各出现1次(0对总和不作贡献,不予考虑,下同)
[0,99]时,个位1~9各出现10次,十位1~9各出现10次,总计各出现20次
[0,999]时,根据乘法原理,个位1~9各出现10*10=100次,十位和百位同理,总计各出现300次
于是不难得到,对于 [0,10k1] ,数字1~9的出现次数都为 k×10k1
然而,剩下部分的暴力却也是比较麻烦的,因为 n 最大为 109,如果 n=999999998 , 单是暴力部分就超过 108 ,会 TLE。
时间复杂度: O(n10lgn)
得分:40。
代码:

#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>

using namespace std;

int calc(int x) {
    int sum = 0;
    while (x) {
        sum += x % 10;
        x /= 10;
    }
    return sum;
}

int n;

int main(void) {
    freopen("1772.in", "r", stdin);
    freopen("1772.out", "w", stdout);

    scanf("%d", &n);
    if (n <= 99) { //小数据单独讨论一下
        int ans = 0;
        for (int i = 1; i <= n; i++) ans += calc(i);
        printf("%d\n", ans);
        return 0;
    }
    int cnt = 1, Pow = 1;
    int i;
    for (i = 9; i <= n; ) {
        if (i * 10 + 9 > n) break; else i = i * 10 + 9;
        Pow *= 10;
        cnt = cnt * 10 + Pow;
    }
    //printf("%d\n", cnt);

    int ans = 0;
    for (int i = 1; i < 10; i++) ans += cnt * i;
    for (int j = i + 1; j <= n; j++) ans += calc(j);

    printf("%d\n", ans);

    return 0;
}


但其实我们都很明白,数据这么大,凡是线性时间的做法都是耍流氓。正解只能是常数时间

正解:
可以根据位数对给定数字进行分解,以34567为例:
先考虑 n 个数中个位上分别是1~9的个数,先来看34560,显然34560里个位是1的数有3456个,2到9也是3456个。
那么没统计的数字就是34560,34561,34562,34563,34564,34565,34566,34567这8个,显然个位是1~7的又各增加1个。
再来看十位:类似的来看34500,则十位是1~9的数各有3450个,剩下还有34501~34567,则十位是1~5的个数分别增加10个,十位是6的增加8个。
以此类推。
时间复杂度:O(len)
得分:100。
重点部分:

#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <iostream>

using namespace std;

int getws(int x) {
    int ret = 0;
    while (x) {
        x /= 10;
        ++ret;
    }
    return ret;
}

int n;
long long cnt[10];

int main(void) {
    freopen("1772.in", "r", stdin);
    freopen("1772.out", "w", stdout);

    scanf("%d", &n);
    int ws = getws(n); //求出位数
    long long Pow = 1; //p=10^k,当然这个k没有显式保存
    //下面以k=2推算,也就是考虑十位的情况
    while (ws--) {
        Pow *= 10;
        long long t = n / Pow * Pow; //相当于把最后k位清0,例如34567,这里得到34500
        for (int i = 1; i < 10; i++) //这部分是统一的,都能增加3450个。
        //因为当十位确定之后,前面五位有345种,后面个位为0~9,所以根据乘法原理共3450种
            cnt[i] += t / 10;
        t = n - t; //多出来的部分:34567-34500=67
        long long x = t / (Pow / 10); //得到十位最大为6
        for (int i = 1; i < x; i++) //对于前面的1~5,它后面的k-1位还是可以任意取的
            cnt[i] += Pow / 10;
        cnt[x] += t - x * (Pow / 10) + 1; //而十位为6就最多只能取0~7这8种
    }

    long long ans = 0;
    for (int i = 0; i < 10; i++) ans += cnt[i] * i;

    printf("%lld\n", ans);

    return 0;
}


想的时候比较直观,当然写起代码来有些式子要推还是感觉有点烦。。编程要有耐心,恒心,毅力!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值