2018年1月30日
1.灰度图基础:
灰度图共分256阶,由0~255表示,0为黑,255为白,从位操作的角度出发,纯黑色为0,不是纯黑色为1,所以在一些纯白色,或者纯黑色背景里,可以转为灰度图,利用阈值将非背景色的内容抠出来作为模板,再与原图做位操作,进行抠图。
2.图像阈值。
利用cv2.threshold(图片文件,阈值下限,阈值上限,阈值模式),可以将目标阈值内的图形抠出。
例:
ret,mask=cv2.threshold(img_gray,25,255,cv2.THRESH_BINARY),此操作将灰度图img_gray里的25~255的像素值全部转为1,即白色,0~24的像素值全部转为0,即黑色。
3.位操作:
(1)Cv2.bitwise_not(图片文件),将图片里像素值按位反向。
(2)Cv2.bitwise_and (目标文件,源文件,mask),将图片里的像素值按位与
(3)Cv2.add(目标文件,源文件),将图片里的像素值按位加。
下例将详细展示如何使用位操作,进行类似Photoshop的抠图操作。
原图如下所示:
img
pic
我们的目标是将上图的白色部分扣除,再叠加到下图上去。
importnumpy as np
importcv2
img=cv2.imread("logo.jpg")
pic=cv2.imread("1.jpg")
img_L,img_W,channal=img.shape
pic_roi=pic[0:img_L,0:img_W]
这部分代码是用于打开两张图片,并在pic里截取和img相同大小的部分。
img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
将img转化为灰度图,结果如下
Img_gray
ret,mask=cv2.threshold(img_gray,175,255,cv2.THRESH_BINARY)
设置阈值为175~255,即将175~255的像素值部分全部设为1,即白色,0~174的部分设为0,即黑色,所以最终结果就是白色的全部保留,非白色部分的全部转为黑色,结果如下
Mask
mask_inv=cv2.bitwise_not(mask)
将mask的像素值取反,即白色(1)变成黑色(0),黑色(0)变成白色(1)
结果如下
Mask_inv
img_bg=cv2.bitwise_and(img,img,mask=mask_inv)
将mask与img进行与操作,mask_inv里的白色部分为1,与操作之后,img相对应的部分不变,而黑色部分为0,与操作后,img里相对应的部分也为0,即黑色。结果如下
Img_bg
pic_bg=cv2.bitwise_and(pic_roi,pic_roi,mask=mask)
将pic_roi和mask进行与操作,逻辑与上一步相同,结果如下:
pic_bg
dst=cv2.add(img_bg,pic_bg)
将img_bg和pic_bg按位相加,黑色为0,相加之后相对应的部分不变,所以其结果如下:
dst
注:如果将img_bg直接和pic_roi相加,则彩色部分相叠加的部分也是彩色,其像素值不是0,会导致出现透明度问题。
pic[0:img_L,0:img_W]=dst
最后将叠加好的dst放回到pic里对应的位置。最终结果如下: