十大排序算法(优化篇)

一. 引言

Hello, 小伙伴们, 算法系列又更新了, 在上篇(入门篇)文章中介绍了两种排序算法, 分别是冒泡排序和插入排序,但是这两种排序算法的时间复杂度都是平方阶的,那在这篇文章中会对冒泡排序进行优化,并且会引入第三种排序算法—— 快速排序。

声明:算法核心思想都是一样的, 不分编程语言, 但是在本系列文章中主要会用 python 或者 JavaScript 语言来实现相关代码, 特此说明一下。

想查看更多的文章请关注公众号:IT巡游屋
在这里插入图片描述

二. 冒泡排序的优化

在上篇文章中我们分析了冒泡排序算法,不管是什么情况,冒泡排序算法的时间复杂度始终是平方阶,但是比方说一个数组本身就是排好序的数组,或者在执行一些步骤时就已经排好序了,那么理想的状态就应该停止执行。

2.1 回顾

下面先复习下之前的冒泡排序算法:

现在对序列 A 进行冒泡排序, 步骤如下:

1. 对比第 1 个元素(记为 A[1]) 和 第 2 个元素(记为 A[2]), 如果A[1] > A[2], 就交换这两个元素;

2. 再次对比 A[2] 和 A[3], 如果 A[2] > A[3], 就交换这两个元素;

3. 重复上述步骤, 直到对比 A[n-1] 和 A[n], 如果 A[n-1] > A[n], 就交换这两个元素, 此时 A[n] 一定是最大的那个元素;

4. 再次对 A[1...n-1] 循环执行第 1~3 的步骤, 直到 对比 A[n-2] 和 A[n-1], 如果 A[n-2] > A[n-1], 就交换这两个元素;

5. 重复执行步骤 4, 直到排序完成.

2.2 优化一

2.2.1 算法描述

核心思想:
在原来的基础上设置一个 标记变量, 初始值为 true, 如果在一次循环中并没有进行任何交换, 就停止排序算法.

2.2.2 算法伪代码
// BubbleSort(A), 参数 A 表示排序的数组或者列表
for j = 1 to A.length - 1
	swapped = false
    for i = 1 to A.length - j
        if A[i] > A[i+1]
			A[i], A[i + 1] = A[i + 1], A[i]
			swapped = true

    // 如果没有发生转换, 则跳出循环
    if !swapped
    break

2.2.3 算法演绎

为了便于对上述算法更简单的理解, 我们用一个具体的序列 A = [ 8 , 3 , 1 , 5 , 4 ] {A = [8, 3, 1, 5, 4]} A=[8,3,1,5,4] 演绎一下冒泡排序的执行步骤.

第 1 次循环 —— j = 1 {j=1} j=1, i {i} i 循环 4 次

A = [8, 3, 1, 5, 4]

1. 首先比较 A[1]=8 与 A[2]=3, 此时 8 > 3, 将 A[1] 和 A[2] 交换位置, 此时 A = [3, 8, 1, 5, 4];

2. 然后比较 A[2]=8 与 A[3]=1, 此时 8 > 1, 将 A[2] 和 A[3] 交换位置, 此时 A = [3, 1, 8, 5, 4];

3. 然后比较 A[3]=8 与 A[4]=5, 此时 8 > 5, 将 A[3] 和 A[4] 交换位置, 此时 A = [3, 1, 5, 8, 4];

4. 然后比较 A[4]=8 与 A[5]=4, 此时 8 > 4, 将 A[4] 和 A[5] 交换位置, 此时 A = [3, 1, 5, 4, 8];

此时可以看到 A[5] = 8 就是最大值;

图形演示如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XFKHHN1x-1603360661324)(images/冒泡排序优化一.png)]

第 2 次循环 —— j = 2 {j=2} j=2, i {i} i 循环 3 次

此时 A = [3, 1, 5, 4, 8]

1. 首先比较 A[1]=3 与 A[2]=1, 此时 3 > 1, 将 A[1] 和 A[2] 交换位置, 此时 A = [1, 3, 5, 4, 8];

2. 然后比较 A[2]=3 与 A[3]=5, 此时 3 < 5, 进入下一轮循环;

3. 然后比较 A[3]=5 与 A[4]=4, 此时 5 > 4, 将 A[3] 和 A[4] 交换位置, 此时 A = [1, 3, 4, 5, 8];

图形演示如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-84XTjYYX-1603360661328)(images/冒泡排序优化-2.png)]

第 3 次循环 —— j = 3 {j=3} j=3, i {i} i 循环 2 次

此时 A = [1, 3, 4, 5, 8]

1. 首先比较 A[1]=1 与 A[2]=3, 此时 1 < 3, 进入下一轮循环;

2. 然后比较 A[2]=3 与 A[3]=4, 此时 3 < 4, 不发生交换;

3. 可知在此轮循环中未发生交换, 此时退出冒泡排序.

可知, 如果用原来的冒泡排序算法, 需要经历 4 个步骤(循环), 但是 经过优化之后只需 3 个步骤 就完成排序了.

2.2.4 算法实现
// 在 js 中, 数组的编号是从 0 开始计数的, A[0] 表示的是数组 A 的第一个数字
function BubbleSort(A) {
    for (var j = 0; j < A.length - 1; j++) {
        // 在每一轮开始将 swapped 设置为 false
        var swapped = false;
        
        for (var i = 0; i < A.length - 1 - j; i++) {
            if (A[i] > A[i + 1]) {
                var temp = A[i];
                A[i] = A[i + 1];
                A[i + 1] = temp;
                
                // 如果此循环发生了交换, 就将 swapped 设置为 true
                swapped = true;
            }
        }

        // 如果此轮没有发生交换, 则退出外层循环, 也就是退出排序算法
        if (!swapped) break;
    }
    return A
}

// 算法测试, 通过调试可以清楚的看到上面的算法演绎的过程
A = [8, 3, 1, 5, 4]
console.log(BubbleSort(A));
2.2.5 算法分析 —— 时间复杂度

为了便于计算时间复杂度, 对于单行代码执行的时间复杂度记为 1。最坏的情况此时就不分析了, 因为和上一次是一致的, 也就是平方阶 O ( n 2 ) {O(n^2)} O(n2)

但是最好的情况, 比如本身就是已经排好序的数组, 那么只需执行一轮循环就可以了,此时冒泡排序的时间复杂度就是线性阶 O ( n ) {O(n)} O(n) 了,可见此时时间复杂度就明显降低了。

2.3 优化二

2.3.1 算法描述

核心思想:
此优化方法是在优化一的基础上的进一步优化, 主要是为了减少二层循环的次数, 记录上一轮未经过排序的元素的最大下标, 那么下一次循环的最大次数只需到达这个位置就可以, 无需再往后进行循环了.

2.2.2 算法伪代码
// BubbleSort(A), 参数 A 表示排序的数组或者列表
for j = 1 to A.length - 1
	swapped = false

	// 未经过排序的元素的最大下标
	indexOfLastUnsortedElement = A.length - 1

	// 上次发生交换的位置
    int swappedIndex = -1

    for i = 1 to indexOfLastUnsortedElement
        if A[i] > A[i+1]
			A[i], A[i + 1] = A[i + 1], A[i]
			swapped = true
			// 更新交换的位置
			swappedIndex = i

	// 未经过排序的元素的最大下标就是最后一次发生交换的位置
    indexOfLastUnsortedElement = swappedIndex;

    // 如果没有发生转换, 则跳出循环
    if !swapped
    break

2.2.3 算法演绎

为了便于对上述算法更简单的理解, 我们用一个具体的序列 A = [ 8 , 3 , 1 , 4 , 5 ] {A = [8, 3, 1, 4, 5]} A=[8,3,1,4,5] 演绎一下冒泡排序(优化二)的执行步骤.

第 1 次循环 —— j = 1 {j=1} j=1, i {i} i 循环 4 次

A = [8, 3, 1, 4, 5]

1. 首先比较 A[1]=8 与 A[2]=3, 此时 8 > 3, 将 A[1] 和 A[2] 交换位置, 此时 A = [3, 8, 1, 4, 5];

2. 然后比较 A[2]=8 与 A[3]=1, 此时 8 > 1, 将 A[2] 和 A[3] 交换位置, 此时 A = [3, 1, 8, 4, 5];

3. 然后比较 A[3]=8 与 A[4]=4, 此时 8 > 4, 将 A[3] 和 A[4] 交换位置, 此时 A = [3, 1, 4, 8, 5];

4. 然后比较 A[4]=8 与 A[5]=5, 此时 8 > 5, 将 A[4] 和 A[5] 交换位置, 此时 A = [3, 1, 4, 5, 8];

此时可以看到 A[5] = 8 就是最大值, 同时未经过排序的元素的最大下标就是 4, 指的是 A[4] = 5 这个元素;

图形演示如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-y0p5d9hw-1603360661331)(images/冒泡排序优化二1.png)]

第 2 次循环 —— j = 2 {j=2} j=2, i {i} i 循环 3 次

此时 A = [3, 1, 4, 5, 8]

1. 首先比较 A[1]=3 与 A[2]=1, 此时 3 > 1, 将 A[1] 和 A[2] 交换位置, 此时 A = [1, 3, 4, 5, 8];

2. 然后比较 A[2]=3 与 A[3]=4, 此时 3 < 4, 进入下一轮循环;

3. 然后比较 A[3]=4 与 A[4]=5, 此时 4 < 5, 进入下一轮循环;

未经过排序的元素的最大下标是 1, 指的是 A[1] = 1 这个元素.

图形演示如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-weA7kYc6-1603360661336)(images/冒泡排序优化二2.png)]

第 3 次循环 —— j = 3 {j=3} j=3, i {i} i 循环 0 次

此时 A = [1, 3, 4, 5, 8]

此时第二层循环直接退出, 不再进行, 也就是没有发生交换, 退出冒泡排序.

可知, 如果用原来的冒泡排序算法, 需要经历 4 个步骤(循环), 但是 经过优化之后也只需 3 个步骤 就完成排序了.

2.2.4 算法实现
// 在 js 中, 数组的编号是从 0 开始计数的, A[0] 表示的是数组 A 的第一个数字
function BubbleSort(A) {
    for (var j = 0; j < A.length - 1; j++) {
        // 在每一轮开始将 swapped 设置为 false
        var swapped = false;
        
        // 未经过排序的元素的最大下标
        var indexOfLastUnsortedElement = A.length - 1;

        // 上次发生交换的位置
        var swappedIndex = -1;
        
        for (var i = 0; i < indexOfLastUnsortedElement; i++) {
            if (A[i] > A[i + 1]) {
                var temp = A[i];
                A[i] = A[i + 1];
                A[i + 1] = temp;
                
                // 更新交换的位置
				swappedIndex = i;
                
                // 如果此循环发生了交换, 就将 swapped 设置为 true
                swapped = true;
            }
        }
        
        // 未经过排序的元素的最大下标就是最后一次发生交换的位置
    	indexOfLastUnsortedElement = swappedIndex;

        // 如果此轮没有发生交换, 则退出外层循环, 也就是退出排序算法
        if (!swapped) break;
    }
    return A
}

// 算法测试, 通过调试可以清楚的看到上面的算法演绎的过程
A = [8, 3, 1, 4, 5]
console.log(BubbleSort(A));
2.2.5 算法分析 —— 时间复杂度

为了便于计算时间复杂度, 对于单行代码执行的时间复杂度记为 1。最坏的情况此时就不分析了, 因为和上一次是一致的, 也就是平方阶 O ( n 2 ) {O(n^2)} O(n2)

但是最好的情况, 就是本身就是已经排好序的数组, 那么也是只需执行一轮循环就可以了,此时冒泡排序的时间复杂度就是线性阶 O ( n ) {O(n)} O(n) 了,可见此时时间复杂度就明显降低了,对于某些情况,此优化方式比优化一的执行次数更少, 算法更优。

三. 快速排序 (QuickSort)

从以上分析我们可以发现, 不管如何优化冒泡排序算法, 它的时间复杂度始终都是平方阶的, 插入排序也同样, 那有没有一种排序算法的时间复杂度不是平方阶的呢? 答案是有的, 那就是将要介绍的 快速排序 算法。

声明: 之前在介绍算法时, 数组的第一个元素都是从 1 开始的, 考虑到大部分读者都是有一定的编程基础的, 那从这里开始, 数组的第一个元素就从 0 开始.

3.1 算法描述

现在对序列 A 进行快速排序, 假设 end = A.length -1, 步骤如下:

  1. 首先取出数组中的任意一个元素比如 A[0] = pivotKey(主元), 然后将 元素pivotKey 与数组中的所有元素依次对比, 如果元素比 pivotKey 小, 就交换这两个元素的位置, 最终可以保证 元素pivotKey 的左侧都是比它小的元素, 右侧都是比它大的元素, 假设此时 元素pivotKey 的位置是 pivot;

  2. 然后再对 A[0, pivot - 1] 和 A[pivot + 1, end] 执行 1 的步骤.

从上面可以看出最关键的就是步骤 1 , 它将数组分为了 三个部分, 分别是 A[0, pivot - 1], A[pivot], A[pivot + 1, end].

3.2 算法伪代码

// QuickSort(A, start, end) 快速排序, 参数A表示一个数组, start 表示开始索引, end 表示结束索引, 也就是对子数组 A[start, end] 进行快速排序算法
QuickSort(A, start, end)
	if start >= end return
	
	// 执行步骤1, 找到主元元素所在的位置
	pivot = Partition(A, start, end)
	QuickSort(A, start, pivot - 1)
	QuickSort(A, pivot + 1, end)

// 说明: 如果对数组 A 中的所有元素进行排序, 那么初始调用是 QuickSort(A, 0, A.length-1)。


// Partition(A, start, end) 是将数组分为三个部分 A[start, pivot-1], A[pivot] 和 A[pivot+1, r], 其中 A[start, pivot-1] 都比 A[pivot] 小, A[pivot+1, end] 都比 A[pivot] 大.
Partition(A, start, end)
	// 选取第一个元素为主元
	pivotKey = A[start]

	// 已经与主元元素对比过的分界位置, 左边是小于主元的元素, 右边是大于主元的元素
	sep = start

	// 第一个元素是主元, 故从第二个元素开始逐个对比
	for j = start + 1 to end
    	if A[j] <= pivotKey
			// 左侧元素要增加一个
			sep++

			// 交换 A[sep] 和 A[j] 的位置, 将 A[j] 放在分界线的左侧
			A[sep], A[j] = A[j], A[sep]
	
	// 最后将 A[start] 这个元素放在分界线的位置, 也就是 A[sep] 的位置
	A[start], A[sep] = A[sep], A[start]
	return sep

3.3 算法演绎

快速排序算法理解起来稍微有些困难, 为了便于更简单的理解, 我们用一个具体的序列 A = [ 4 , 1 , 5 , 8 , 3 ] {A = [4, 1, 5, 8, 3]} A=[4,1,5,8,3] 演绎一下快速排序算法的执行步骤.

对 A[0, 4]= [4, 1, 8, 5, 3] 执行快速排序算法

此时参数 A = [4, 1, 5, 8, 3], start=0, end=4

由于 start < end, 进入算法

1. 首先执行 Partition(A, 0, 4), 选取第一个元素 A[0]=4 为主元, 即 pivotKey=4, 并将此元素和数组中的所有元素对比, 初始 sep=0:
	(1) 当 j=1 时, 比较 pivotKey=4 与 A[1] = 1, 知 4 > 1, 此时 sep++ 也变为 1, 将 A[1] 与 A[1] 位置交换, A 不变;
	
	(2) 当 j=2 时, 比较 pivotKey=4 与 A[2]=5, 知 4 < 5, A 不变;
	(3) 当 j=3 时, 比较 pivotKey=4 与 A[3]=8, 知 4 < 8, A 不变, A = [4, 1, 5, 8, 3];
	
	(4) 当 j=4 时, 比较 pivotKey=4 与 A[4]=3, 知 4 > 3, 此时 sep++ 变为 2, 接着将 A[2] 与 A[4] 交换位置, 此时 A=[4, 1, 3, 8, 5], 退出循环;
	
	(5) 此时 sep=2, 将 A[0] 与 A[2] 交换位置, 此时 A = [3, 1, 4, 8, 5];
	(6) 最终返回 sep=2, 此时可以看出 A[2] = 4 前面的元素都比 4 小, 后面的元素都比 4 大;

2. 对 A[0, 1] = [3, 1] 和 A[3, 4] = [8, 5] 进行快速排序, 重复上述步骤.

图形演示如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RAjwzFba-1603360661338)(images/快速排序步骤一.png)]

说明:

  • 选取第一个元素为主元 p i v o t K e y = A [ s t a r t ] {pivotKey= A[start]} pivotKey=A[start];

  • 浅阴影部分的数组元素都比 p i v o t {pivot} pivot 小, 深阴影部分的数字组元素都比 p i v o t {pivot} pivot 大, 无阴影部分是还未进行划分的元素(除去第一个元素);

  • 在 第(6)步中, 将 A [ p i v o t ] {A[pivot]} A[pivot] A [ s e p ] {A[sep]} A[sep] 交换, 此时 A [ s e p ] {A[sep]} A[sep] 左侧的元素都比它小, 右侧的元素都比它大。

对A[0, 1] = [3, 1] 执行快速排序算法

此时参数 A = [3, 1, 4, 8, 5], start=0, end=1

由于 start < end, 进入算法

1. 首先执行 Partition(A, 0, 1), 选取第一个元素 A[0]=3 为主元, 即 pivotKey=3, 并将此元素和数组中的所有元素对比, 初始 sep = 0:
	(1) 当 j=1 时, 比较 pivotKey=3 与 A[1]=1, 知 3 > 1, 此时 sep++ 也为 1, 接着将 A[1] 与 A[1] 位置交换, A 不变, 退出循环;
	
	(2) 此时 sep=1, 将 A[0] 与 A[1] 交换位置, 此时 A = [1, 3, 4, 8, 5];
	(3) 最终返回 sep=1;

2. 对 A[0, 0] = [1] 再次进行快速排序, 实际上会直接退出, 不会进入算法.

这一步比较简单, 所以就不在提供图形演示了, 只要理解了上面图形演示, 拿这一步就很简单了。

对A[3, 4] = [8, 5] 执行快速排序算法

此时参数 A = [1, 3, 4, 8, 5], start=3, end=4

由于 start < end, 进入算法

1. 首先执行 Partition(A, 3, 4), 选取第一个元素 A[3]=8 为主元, 即 pivotKey=8, 并将此元素和数组中的所有元素对比, 初始 sep=3:
	(1) 当 j=4 时, 比较 pivotKey=8 与 A[4]=5, 知 8 > 5, 此时 sep++ 也是 4, 接着 将 A[4] 与 A[4] 位置交换, A 不变, 退出循环;
	
	(3) 此时 sep=4, 将 A[3] 与 A[4] 交换位置, 此时 A = [1, 3, 4, 5, 8];
	(4) 最终返回 sep = 4;

2. 对 A[3, 3] = [5] 再次进行快速排序, 实际上会直接退出, 不会进入算法, 排序结束.

3.4 算法实现

我们今天用 JavaScript 实现以下快速排序的算法

// QuickSort(A, start, end) 快速排序, 参数A表示一个数组, start 表示开始索引, end 表示结束索引, 也就是对子数组 A[start, end] 进行快速排序算法
function QuickSort(A, start, end) {
    if (start >= end) return A;

    pivot = Partition(A, start, end);
    QuickSort(A, start, pivot - 1);
    QuickSort(A, pivot + 1, end);

    return A;
}

function Partition(A, start, end) {
    var pivotKey = A[start];
    var sep = start;

    for (var j = start + 1; j <= end; j++) {
        if (A[j] < pivotKey) {
            sep++;
            var tmp = A[sep];
            A[sep] = A[j];
            A[j] = tmp;
        }

    }

    var tmp = A[start];
    A[start] = A[sep];
    A[sep] = tmp;

    return sep;
}


// 算法测试, 通过调试可以清楚的看到上面的算法演绎的过程
A = [4, 1, 5, 8, 3]

// 调用方式
console.log(QuickSort(A, 0, A.length-1));

3.5 时间复杂度

由于快速排序的时间复杂度分析设计到专业的数学知识, 以后可能会专门出一篇文章进行详细的分析, 在这里不过多赘述。其实快速排序算法的时间复杂度主要取决于每次执行 Partition 时数组如何划分:

  • **最坏情况划分: ** 当划分产生的两部分分别包含 n-1 个元素 和 0 个元素时, 就是最坏情况, 那在执行划分过程时, 需要循环 n-1 次, 假设每次都是这种情况, 那共需要循环
    1 + 2 + . . . + ( n − 1 ) = n ∗ ( n − 1 ) / 2 1 + 2 + ... + (n-1) = n*(n-1)/2 1+2+...+(n1)=n(n1)/2

    此时时间复杂度还是 O ( n 2 ) {O(n^2)} O(n2)

  • **最好情况划分: ** 最理想的情况, 就是每次划分都是平均的, 也就是一半的元素小于主元, 一半的元素大于主元, 此时时间复杂度就是 O ( n l g n ) {O(nlgn)} O(nlgn)

  • **平均情况: ** 快速排序的平均情况更接近于最好情况, 所以只要每次划分的两部分是常数比例, 算法的时间复杂度就还是 O ( n l g n ) {O(nlgn)} O(nlgn)

​ 综上所述, 快速排序的平均时间复杂度是 O ( n l g n ) {O(nlgn)} O(nlgn), 这个时间复杂度远小于 O ( n 2 ) {O(n^2)} O(n2), 也就是说 快速排序 在大多数情况下都是优于 冒泡排序 或者 插入排序 的, 这也是为什么很多家公司面试时必问快速排序算法的原因。在本系列的下一篇文章中, 我们将介绍其他常见的排序算法 —— 归并排序算法并分析其时间复杂度。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值