一天搞懂深度学习—学习笔记3(RNN)

本文介绍了循环神经网络(RNN)的基本概念,包括如何对词语建模,RNN的结构和工作原理,以及RNN在网络展开后的层与层之间的关系。RNN主要用于NLP领域,因其能够捕捉语义上下文信息。文中还提及了LSTM(长短期记忆网络)在RNN中的重要角色,以及其Forget Gate如何帮助保留信息。
摘要由CSDN通过智能技术生成

Recurrent Neural Network(RNN) (Neural Network with Memory)

1.一些基本的理解

开场首先来个填词题目,I would like to arrive at (Taipei) on (November 2nd). 我们人来填的话,很简单就能想到第一个空是地点,第二个是时间。那么对于计算机,它该如何处理这样的内容呢。

首先第一个要解决的是表示形式。
在语言中,最基本的是字,然后由字可以组成词语,词语可以连成句子,那么问题就变得简单了,只要我们能表示一个词语,并让计算机识别这个词语,那么就可以表示这样一个句子。不过在自然语言中,一个字表达的意思往往不够清楚,因此主要选择对词语进行建模,然后连词成句,当然也可以对字进行建模,不过数量上应该少很多。

怎样对词语建模呢
如果了解work2vec的工作原理,那这个问题就很简单了。work2vec将句子先拆分成词语,首先建立词语库,对每一个词语初始化100、200甚至更高维度的词向量,注意到,这里的词向量是需要先初始化的,然后在不断的训练中得到最优词向量。
(有一种编码方式叫做独热编码one-hot encoding, 具体内容查看下面网址,个人觉得这个讲的比其它的好 http://www.wy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值