传球游戏

背景 Background  
     NOIP2008复赛普及组第三题
 
     
     
  描述 Description    
     上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。 

游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没传出去的那个同学就是败者,要给大家表演一个节目。 

聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球的方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有3个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。 

 
     
     
  输入格式 Input Format  
     输入文件ball.in共一行,有两个用空格隔开的整数n,m(3<=n<=30,1<=m<=30)。  
     
     
  输出格式 Output Format  
     输出文件ball.out共一行,有一个整数,表示符合题意的方法数。  



样例输入 Sample Input 
3 3
样例输出 Sample Output
2


注释 Hint  
40%的数据满足:3<=n<=30,1<=m<=20 
100%的数据满足:3<=n<=30,1<=m<=30 

思路:

很好的一道递推题,想了好久,f[i][j]表示传了i次球之后,传到编号为j的学生的方法数,

没开始时,球在0号身上,所以f[0][0]=1;对于每个状态,无非是从左传来球或者从右边传来球

状态转移方程为f[i][j]=f[i-1][j-1]+f[i-1][j+1];注意边界的处理

---------------------------------------------------------------------------------------------

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<cstdio>
using namespace std;
int f[50][50];
int n,m;
int find(int note)          //边界处理
{
    if(note==-1)
    return (n-1);
    else if(note==n)
    return 0;
    else
    return note;
}
int main()
{
    cin>>n>>m;
    memset(f,0,sizeof(f));
    f[0][0]=1;
    for(int i=1;i<=m;i++)//递推
    {
        for(int j=0;j<n;j++)
        {
            f[i][j]=f[i-1][find(j-1)]+f[i-1][find(j+1)];
        }
    }
    cout<<f[m][0]<<endl;
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值