背景 Background
游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没传出去的那个同学就是败者,要给大家表演一个节目。
聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球的方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有3个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。
样例输入 Sample Input
3 3
样例输出 Sample Output
2
注释 Hint
40%的数据满足:3<=n<=30,1<=m<=20
100%的数据满足:3<=n<=30,1<=m<=30
思路:
很好的一道递推题,想了好久,f[i][j]表示传了i次球之后,传到编号为j的学生的方法数,
没开始时,球在0号身上,所以f[0][0]=1;对于每个状态,无非是从左传来球或者从右边传来球
状态转移方程为f[i][j]=f[i-1][j-1]+f[i-1][j+1];注意边界的处理
---------------------------------------------------------------------------------------------
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<cstdio>
using namespace std;
int f[50][50];
int n,m;
int find(int note) //边界处理
{
if(note==-1)
return (n-1);
else if(note==n)
return 0;
else
return note;
}
int main()
{
cin>>n>>m;
memset(f,0,sizeof(f));
f[0][0]=1;
for(int i=1;i<=m;i++)//递推
{
for(int j=0;j<n;j++)
{
f[i][j]=f[i-1][find(j-1)]+f[i-1][find(j+1)];
}
}
cout<<f[m][0]<<endl;
return 0;
}