POJ2983 查分约束系统

题意:
       给你n个点,然后给你两种情况,P a b c,表明a在b的北边c那么远,V a b 表明a在b的北边(距离最少是1),问你这些条件是否冲突。


思路:
      一开始想用带权并查集,先处理P在处理V,想想感觉不对,还是查分约束吧,查分约束处理这个题时间和建图都简单,首先查分约束是根据最短路(或最长路)的不等式关系建图的,给你一个图,跑完最短路对于边<a ,b> 会有dis[b] <= dis[a] + map[a][b];
则 dis[b] - dis[a] <= map[a][b](或者也可以dis[a] - dis[b] >= map[a][b],只不过这样要跑最长路),对于这个题目,
V a b    : add(a ,b ,1).
P a b c  : add(a ,b ,c) ,add(b ,a ,-c).
跑一遍最长路,或者
V a b    : add(a ,b ,-1).
P a b c  : add(a ,b ,-c),add(b ,a ,c).
跑一遍最短路。

提醒一点就是别忘记建立超级原点s,s到每个点的距离都是0,这样是为了防止整个图不是一个联通快。


#include<stdio.h>
#include<string.h>
#include<queue>

#define N_node 2000 + 10
#define N_edge 500000 + 200
#define INF 1000000000

using namespace std;

typedef struct
{
   int to ,next ,cost;
}STAR;

STAR E[N_edge];
int list[N_node] ,tot;
int in[N_node];
int s_x[N_node];

void add(int a ,int b ,int c)
{
   E[++tot].to = b;
   E[tot].cost = c;
   E[tot].next = list[a];
   list[a] = tot;
}

bool spfa(int s ,int n)
{
   int mark[N_node] = {0};
   memset(in ,0 ,sizeof(in));
   for(int i = 0 ;i <= n ;i ++)
   s_x[i] = -INF;
   s_x[s] = 0;
   mark[s] = 1;
   in[s] ++;
   queue<int>q;
   q.push(s);
   while(!q.empty())
   {
      int xin ,tou;
      tou = q.front();
      q.pop();
      mark[tou] = 0;
      for(int k = list[tou] ;k ;k = E[k].next)
      {
         xin = E[k].to;
         if(s_x[xin] < s_x[tou] + E[k].cost)
         {
            s_x[xin] = s_x[tou] + E[k].cost;
            //printf("%d %d***\n" ,tou ,xin);
            if(!mark[xin])
            {
               mark[xin] = 1;
               if(++in[xin] > n) return 0;
               q.push(xin);
            }
         }
      }
   } 
   return 1;
}

int main ()
{
   int i ,n ,m ,a ,b ,c;
   char str[10];
   while(~scanf("%d %d" ,&n ,&m))
   {
      memset(list ,0 ,sizeof(list));
      tot = 1;
      for(i = 1 ;i <= m ;i ++)
      {
         scanf("%s" ,str);
         if(str[0] == 'P')
         {
            scanf("%d %d %d" ,&a ,&b ,&c);
            add(a ,b ,c);
            add(b ,a ,-c);
         }
         else
         {
            scanf("%d %d" ,&a ,&b);
            add(a ,b ,1);
         }
      }
      for(i = 1 ;i <= n ;i ++)
      add(0 ,i ,0);
      if(spfa(0 ,n)) printf("Reliable\n");
      else printf("Unreliable\n");
      
      
   }
   return 0;
}
   

  
      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值