hdu4876 深搜+(随机枚举剪枝)

题意:
      给你n个数,让你从选择k个数,然后排成一个环(k个数的顺序随意,但是排成一个环后就不能变了),然后可以在这个环上任意的找连续w个数(w<=k),可以找多次,得到一个值等于当前找的连续的数的异或和,最后问你能找到>=L&&<=R的最大的R,L,R之间的数必须全部存在,给你N,K,L,求最大的R.

思路:

      直接先暴力找到k个数(最多C(20,6)),然后在枚举这k个数的全排列(全排列有STL函数,不想用可以自己深搜枚举),对于每一个序列求出所有可能解,找到最大的R,更新答案,这里有一个很重要的剪枝,也是这个题目的核心就是在全排列之前可以先判断一下是否可能存在可以更新R的最优解,直接深搜枚举当前这k个数(不用管顺序,是找可能存在),看看组成的最大的是否比当前的最大R大,如果不是,那么就没必要全排列再去枚举了,时间复杂度 深搜判断是 O(2^5) 而直接来全排列+枚举是 O(5! * 5 * 5),题目说的是随机数据,所以不存在那种全是极端数据,也就是所有情况都满足的数据,所以相比之下,还是加上那个剪枝比较合算。


#include<stdio.h>
#include<string.h>
#include<algorithm>

using namespace std;

int N ,K ,L ,R ,ks;
int num[25] ,mark[130];
int now[25];

void mk_jude(int k ,int sum)
{
    if(k == K + 1) return ;
    mark[sum ^ now[k]] = 1;
    mk_jude(k + 1 ,sum ^ now[k]);
    mk_jude(k + 1 ,sum);   
}

int jude(int k ,int sum)
{
    memset(mark ,0 ,sizeof(mark));
    mk_jude(1 ,0);
    for(int i = L ;i <= R ;i ++)
    if(!mark[i]) return 0;
    return 1;
}


void dfs(int k ,int I)
{
   if(k == K + 1)
   {   
       if(!jude(1 ,0)) return;
       int tmp[25];
       for(int i = 1 ;i <= K ;i ++)
       tmp[i] = now[i];
       for(int tt = 1 ;tt <= ks ;tt ++)
       {
          memset(mark ,0 ,sizeof(mark));
          for(int i = 1 ;i <= K ;i ++)
          {
               int sum = 0;
               for(int j = 1 ;j <= K ;j ++)
               {
                  int a = i + j - 1;
                  if(a > K) a -= K;
                  sum = sum ^ tmp[a];
                  mark[sum] = 1;
               }
          }         
          int mk = 0;
          for(int i = L ;1 ;i ++)
          if(!mark[i])
          {
            mk = i - 1;
            break;     
          }        
          if(R < mk) R = mk;
          next_permutation(tmp + 1 ,tmp + K + 1);
      }
      return ;
   }
   if(I == N + 1) return;
   now[k] = num[I];
   dfs(k + 1 ,I + 1);
   dfs(k ,I + 1);
}

int main ()
{
   int i;
   while(~scanf("%d %d %d" ,&N ,&K ,&L))
   {
      for(i = 1 ;i <= N ;i ++)
      scanf("%d" ,&num[i]);
      for(R = 0 ,ks = 1 ,i = 2 ;i <= K ;i ++)
      ks *= i;
      dfs(1 ,1);
      if(R < L) R = 0;
      printf("%d\n" ,R);
   }
   return 0;
}
      




以下是对提供的参考资料的总结,按照要求结构化多个要点分条输出: 4G/5G无线网络优化与网规案例分析: NSA站点下终端掉4G问题:部分用户反馈NSA终端频繁掉4G,主要因终端主动发起SCGfail导致。分析显示,在信号较好的环境下,终端可能因节能、过热保护等原因主动释放连接。解决方案建议终端侧进行分析处理,尝试关闭节电开关等。 RSSI算法识别天馈遮挡:通过计算RSSI平均值及差值识别天馈遮挡,差值大于3dB则认定有遮挡。不同设备分组规则不同,如64T和32T。此方法可有效帮助现场人员识别因环境变化引起的网络问题。 5G 160M组网小区CA不生效:某5G站点开启100M+60M CA功能后,测试发现UE无法正常使用CA功能。问题原因在于CA频点集标识配置错误,修正后测试正常。 5G网络优化与策略: CCE映射方式优化:针对诺基亚站点覆盖农村区域,通过优化CCE资源映射方式(交织、非交织),提升RRC连接建立成功率和无线接通率。非交织方式相比交织方式有显著提升。 5G AAU两扇区组网:与三扇区组网相比,AAU两扇区组网在RSRP、SINR、下载速率和上传速率上表现不同,需根据具体场景选择适合的组网方式。 5G语音解决方案:包括沿用4G语音解决方案、EPS Fallback方案和VoNR方案。不同方案适用于不同的5G组网策略,如NSA和SA,并影响语音连续性和网络覆盖。 4G网络优化与资源利用: 4G室分设备利旧:面对4G网络投资压减与资源需求矛盾,提出利旧多维度调优策略,包括资源整合、统筹调配既有资源,以满足新增需求和提质增效。 宏站RRU设备1托N射灯:针对5G深度覆盖需求,研究使用宏站AAU结合1托N射灯方案,快速便捷地开通5G站点,提升深度覆盖能力。 基站与流程管理: 爱立信LTE基站邻区添加流程:未提供具体内容,但通常涉及邻区规划、参数配置、测试验证等步骤,以确保基站间顺畅切换和覆盖连续性。 网络规划与策略: 新高铁跨海大桥覆盖方案试点:虽未提供详细内容,但可推测涉及高铁跨海大桥区域的4G/5G网络覆盖规划,需考虑信号穿透、移动性管理、网络容量等因素。 总结: 提供的参考资料涵盖了4G/5G无线网络优化、网规案例分析、网络优化策略、资源利用、基站管理等多个方面。 通过具体案例分析,展示了无线网络优化中的常见问题及解决方案,如NSA终端掉4G、RSSI识别天馈遮挡、CA不生效等。 强调了5G网络优化与策略的重要性,包括CCE映射方式优化、5G语音解决方案、AAU扇区组网选择等。 提出了4G网络优化与资源利用的策略,如室分设备利旧、宏站RRU设备1托N射灯等。 基站与流程管理方面,提到了爱立信LTE基站邻区添加流程,但未给出具体细节。 新高铁跨海大桥覆盖方案试点展示了特殊场景下的网络规划需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值