- 博客(21)
- 收藏
- 关注
原创 SwinIR速读
优雅有效的swinIR。这体现出了arxiv的魅力。如果SwinTransformer不提前挂arxiv,也就没有SwinIR。
2024-08-09 23:29:49 414
原创 ViT和SwinTransformer详解
ViT是Google brain发表于ICLR'21上的工作,开创性将transformer用在vision领域,且图像识别性能超CNN,至今引用3.8w+; SwinTransformer是微软亚洲研究院发表于ICCV'21上,获best paper,在多个视觉任务上获sota,打破CNN垄断vision backbone的现状,至今引用1.8w+;
2024-08-05 23:13:28 1341
原创 计算概论学习笔记(2)
【道阻且长,行则将至】很多年没有intensive coding,现在这个系列是coding retake,一点点回忆之前的知识,希望能重回到一线。主要内容包括C,C++,Pytorch学术前沿项目学习和实践,预计会在2024年内完成。1. Skill,训练得技能!!!编程不能只学Knowledge2. 须抓大放小3. 多练简单题4. 选一本薄的书(个人认为,参考书必要不大,该课程已经可以构建较全的知识体系,其余应该通过QA-driven方式借助互联网学习)
2024-05-12 00:00:00 413
原创 深入浅出搞懂VAE
2013年提出的VAE,跨越11年,获得首届ICLR‘24时间检验奖,是深度学习的重要技术之一。这篇论文把深度学习和可扩展的概率推理整合在一起,从而产生了变分自编码器(VAE),这项工作其持久的价值在于优雅,加深了我们对于深度学习和概率建模之间相互作用的理解,引发了许多后续有趣的概率模型和编码方法的开发。下面按照三个部分进行,由易到难:核心思想,技术难点和实现(如何将概率转换成网络?),理论支持(变分下界推导,损失函数),复盘。
2024-05-11 23:59:28 1624 2
原创 Ax=b解,向量空间的基、维度(Part IV)
目录:求解Ax=bAx=b向量间的线性无关性(linear Independence of vectors)向量空间的基(Vectors that span a space & A basis for a vector space)向量空间的维度(dimension of a vector space)
2016-05-25 21:29:05 7353
原创 向量空间,子空间,列空间,零空间(PartIII)
目录:vector space (向量空间)subspace space (子空间)由Ax=bAx=b理解column space (列空间)由Ax=0Ax=0理解null space(零空间),求解Ax=0Ax=0的主变量及特解 -矩阵的秩(rank)
2016-05-24 00:49:17 17981 1
原创 矩阵关键概念:消元法、A=LU分解等(PartII)
接着PartI的内容,主要记录以下三个问题:Gauss-Jordan 消元法A=LU分解矩阵相关性质1.矩阵的消元(Matrix Elimination) 线性代数中最重要的一部分莫过于在Ax=b中对x的求解。回想一下,在求解线性方程组(如:二元方程组),我们采用的解法就是先消掉一个元,解出一个未知数后,再回带求解另一个未知数。 矩阵消元的步骤有: 1) 产生一个上三角矩
2016-05-22 21:47:33 7130 3
原创 线性代数中向量、矩阵深度理解(PartI)
本文参考资料:Introduction to linear algebra (Gilbert Strang)书以及其在MIT的视频。 看了有一周了,矩阵的认识不限于本科所学的固定运算,知道从空间中去理解,这对于后续子空间、各种空间变换学习来说很关键。故总结于此。 目录:向量理解(线性组合)矩阵理解(Ax=b中从row picture及column picture的理解)矩阵乘法理解(四种方法)
2016-05-13 14:45:27 11768 2
原创 记录是为了更明白地前进
早就开通了博客,却不曾坚持去记录。有些时候是真忙,比如:赶会议的deadline,有些时候却是懒,不想要自己花点功夫来迭代更新。以至于现在的我,相较两年前除了长了2岁,似乎记不得有什么特别的进步了。 今天恍然一想以为是周二,一看手机却是周三,脑子里怎么也想不起来周一收获了些什么,所以在此写下:我要把这个记录当成习惯,至少做到半周记,半月总结。写在这里,免得日后耍赖。我大约想记以下内容:人脸识别相
2016-03-30 20:20:12 764
原创 视觉识别领域会议列表
Submission Deadline Conference Rank Period Conference Date Jan. FGR (Automatic Face and Gesture Recognition) C biennial May Jan. ICIP C annually Sep. Feb. ICML A annu
2015-12-02 19:32:39 1167
原创 2015年之“三省”
2014年已经过去,无论表现的好与坏,收获大与小,都已经逝者如斯。 2015年已经到来,面对过去一年自我管理的缺失、学业上的困境以至于自己总是处于挣扎中,不断地患得患失。新的一年应该是要改变了,我决心从以下几点提高自我: 1.时间管理上,做到:严格的早起、午休、杜绝熬夜; 2.效率管理上,利用简单的‘yes or no’的原则来约束自我行为,如果当前正在做的事情与提高
2015-01-02 22:31:35 698
原创 DLT(deep learning tracker) 2次分析
dlt利用1million样本用9层的稀疏自编码机进行线下训练的过程暂不讨论。重点放在,当用稀疏自编码机的encoder部分+sigmoid层的几次训练。 1.第一帧时,对encoder+sigmoid层进行初次训练时,自采样110个样本(10个正例样本、100个负例样本),采用前向网络、BP算法、梯度下降算法等进行训练实质:进行批梯度下降算法。学习速率(步长)rate=0.01;梯度的
2014-04-09 15:56:08 2124
原创 DLT(deep learning tracker)解析
视觉跟踪方法:dlt(deep learning tracker)着实火了一把,它应该可以代表2013跟踪领域的state-of-art。最近对其进行了仔细的研究,现按照框架、核心思想、展望进行“深度解析”。 框架 整个算法还是在主流的PF(particle filter)概率框架下进行。简要总结下:PF包括三个部分:drift--diffuse--measure 其目标是从
2014-04-04 11:49:11 7771
翻译 batch gradient algorithm and stochastic gradient algorithm
在学习standford的ML视频时遇到这两个概念:批梯度下降算法和随机梯度下降算法。梯度下降算法基本思想:新参数获得:旧参数沿着损失函数梯度方向上下降一定步长。 上述两个公式是梯度下降算法的数学表示,其中重要的是alpha,theta,J(theta)。alpha表示的是学习速率或步长,在编程中是需要进行调试的参数。theta是需求的参数数组。
2014-03-24 22:38:36 855
原创 剖析Condensation算法
最近,学习IVT(Incremental VisualTracking)目标跟踪算法时,细致地学习了Condensation算法,现将其用法进行剖析。 谈Condensation算法前先啰嗦下IVT,其主要思想:用一组随机且带权重的粒子(一组仿射参数)使跟踪框动态跟踪目标,利用不同粒子对应跟踪内容与目标差异作为更新权重的重要依据,权重最大的粒子跟踪内容与目标最相似,完成跟踪。其中,粒子跟踪内
2014-03-18 11:45:17 3775 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人