hdu 1466 计算直线的交点数

Problem Description
平面上有n条直线,且无三线共点,问这些直线能有多少种不同交点数。
比如,如果n=2,则可能的交点数量为0(平行)或者1(不平行)。
 
Input
输入数据包含多个测试实例,每个测试实例占一行,每行包含一个正整数n(n<=20),n表示直线的数量.
 
Output
每个测试实例对应一行输出,从小到大列出所有相交方案,其中每个数为可能的交点数,每行的整数之间用一个空格隔开。
 
Sample Input
  
  
2 3
 
Sample Output
  
  
0 1 0 2 3
这是个简单DP题目,但是最难找的是转移方程。
 * f(n)为其交点方案, 
 * 假设有r条非互相平行线,则  
 * f[n] = (n-r) * r (n-r条互相平行线和其它r条线的交点) + f[r] 
 * 用dp[i][j]表示i条直线,是否有会有j个交点,如果有j个交点,则置为1,否则为0; 
 * 根据上面的方程:只要dp[r][j]=1(r条直线有j个交点是成立的),那么肯定有dp[i][(i-r)*r+j]=1;
 * 记录i条直线所有可能的方案数
 * n条直线最多有 n*(n-1)/2 个交点,n最大为20,交点数最多为190 

   
   
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int main()
{
	int n; 
	int r; //假设有r条非互相平行的线 
	int i,j;
	int dp[21][191]; //i条直线是否可能有j个交点是否成立 
	memset(dp, 0 ,sizeof(dp));
	for(i=0; i<=20; i++)
	{
		dp[i][0] = 1; //任何数量的直线有0个交点都是成立的,当它们都平行的时候 
		for(r=0; r<=i; r++) //r条非互相平行线
		{
			for(j=0; j<=190; j++)
			{ 
				if(dp[r][j] == 1)
				{
					dp[i][(i-r)*r+j] = 1;
				}
			}
		}
		
	}
	
	while(scanf("%d",&n) != EOF)
	{
		
		for(j=0; j <= n*(n-1)/2; j++)
		{
			if(dp[n][j] == 1)
			{
				if(j!=0)
					cout<<" "; //除了第一个,其它的都在前面放一个空格 
				cout<<j;
			}
		}
		cout<<endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值