Problem Description
平面上有n条直线,且无三线共点,问这些直线能有多少种不同交点数。
比如,如果n=2,则可能的交点数量为0(平行)或者1(不平行)。
比如,如果n=2,则可能的交点数量为0(平行)或者1(不平行)。
Input
输入数据包含多个测试实例,每个测试实例占一行,每行包含一个正整数n(n<=20),n表示直线的数量.
Output
每个测试实例对应一行输出,从小到大列出所有相交方案,其中每个数为可能的交点数,每行的整数之间用一个空格隔开。
Sample Input
2 3
Sample Output
0 1 0 2 3这是个简单DP题目,但是最难找的是转移方程。 * f(n)为其交点方案, * 假设有r条非互相平行线,则 * f[n] = (n-r) * r (n-r条互相平行线和其它r条线的交点) + f[r] * 用dp[i][j]表示i条直线,是否有会有j个交点,如果有j个交点,则置为1,否则为0; * 根据上面的方程:只要dp[r][j]=1(r条直线有j个交点是成立的),那么肯定有dp[i][(i-r)*r+j]=1; * 记录i条直线所有可能的方案数 * n条直线最多有 n*(n-1)/2 个交点,n最大为20,交点数最多为190#include <iostream> #include <cstdio> #include <cstring> using namespace std; int main() { int n; int r; //假设有r条非互相平行的线 int i,j; int dp[21][191]; //i条直线是否可能有j个交点是否成立 memset(dp, 0 ,sizeof(dp)); for(i=0; i<=20; i++) { dp[i][0] = 1; //任何数量的直线有0个交点都是成立的,当它们都平行的时候 for(r=0; r<=i; r++) //r条非互相平行线 { for(j=0; j<=190; j++) { if(dp[r][j] == 1) { dp[i][(i-r)*r+j] = 1; } } } } while(scanf("%d",&n) != EOF) { for(j=0; j <= n*(n-1)/2; j++) { if(dp[n][j] == 1) { if(j!=0) cout<<" "; //除了第一个,其它的都在前面放一个空格 cout<<j; } } cout<<endl; } return 0; }