机器学习
文章平均质量分 74
扑满大师
专注在telegram的bot开发,爱好区块链相关
展开
-
文章标题
机器学习-1来自b站的一个视频: 机器学习1题目大意给出一些水果的数据(苹果和橘子),数据中包含了重量和表皮光滑度 要求生成classifier(分类器)来预测输入的数据是苹果还是橘子python代码:# coding=utf-8# 引入sklearn包from sklearn import tree# 判断是苹果还说橘子# 数据格式:[重量(单位:克),表皮光滑]# 0表示光滑,1表翻译 2017-02-11 16:13:09 · 194 阅读 · 0 评论 -
机器学习2-决策树的可视化
iris数据鸢尾花数据是一个经典的入门案例python代码# coding=utf-8# sklearn中为我们准备的数据-iris# iris有三种鸢尾花,山鸢尾花,变色鸢尾和维吉尼亚鸢尾# 数据中有4个特征(feature)# sepal length (花萼长度)# sepal width (花萼宽度)# petal lenth (花瓣长度)# petal width (花瓣宽度)翻译 2017-02-11 20:45:46 · 6875 阅读 · 1 评论 -
机器学习3-什么是好的特征
好的特征 本章比较简单,直接贴代码和图片python代码# coding=utf-8# 什么是好的特征(feature)# 要求判断狗是灰狗还是拉布拉多# 现在的数据有2个feature,一个是身高,一个是眼睛的颜色# 首先说身高# 灰狗的身高大概在28cm,正负4cm# 拉布拉多的身高大概在24cm,正负4cm# 我们来模拟一些随机数据import numpy as npimport原创 2017-02-12 00:01:29 · 458 阅读 · 0 评论 -
机器学习4-评分
直接贴代码# coding=utf-8from sklearn.datasets import load_iris# 获取鸢尾数据iris = load_iris()X = iris.datay = iris.target# 评分公式from sklearn.metrics import accuracy_score# cross_validation 改成 model_selection#原创 2017-02-12 10:29:05 · 388 阅读 · 0 评论 -
机器学习5-自己的第一个分类器
python 代码# coding=utf-8import randomfrom sklearn.datasets import load_iris# 获取鸢尾数据iris = load_iris()X = iris.datay = iris.target# 评分公式from sklearn.metrics import accuracy_score# 乱写的一个分类器# 评分大概cl原创 2017-02-12 13:20:22 · 341 阅读 · 0 评论 -
机器学习6-tensorflow
这次我们使用tensorflow来区分irispython代码# coding=utf-8from sklearn import metrics,model_selectionimport tensorflow as tffrom tensorflow.contrib import learn# 获取鸢尾数据iris = learn.datasets.load_dataset('iris')原创 2017-02-12 22:40:11 · 459 阅读 · 0 评论 -
贝叶斯概率
贝叶斯概率贝斯公式和全概率公式的意思差不多相反。全概率公式是说;某件事情的发生可以由很多情况导致,那么这件事情发生的概率,就是每件事情导致他发生的概率,乘以每件事情发生的概率。 贝斯公式的意思是:某件事情还是由刚才所说的那些事件引起的,你已经知道某件事情发生了,那么他是由哪件事情引起的呢?就可以又贝斯公式A事件引起他发生的概率。基本概念条件概率条件概率,事件B发生的情况下,事件A发生的概率,用P(A原创 2017-02-26 23:04:13 · 721 阅读 · 2 评论