Description
In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles?
Here is a sample tiling of a 2x17 rectangle.
Here is a sample tiling of a 2x17 rectangle.
Input
Input is a sequence of lines, each line containing an integer number 0 <= n <= 250.
Output
For each line of input, output one integer number in a separate line giving the number of possible tilings of a 2xn rectangle.
Sample Input
2 8 12 100 200
Sample Output
3
171
2731
845100400152152934331135470251
1071292029505993517027974728227441735014801995855195223534251
分析: 手写可以写出前三项 分别为 1,3,5;
从第四项开始 我们可以发现
假设已经求得了 长度为n-1 的方法数,那么要铺满n,只有一种方法,用1*2
假设已经求得了 长度为n-2 的方法数,那么要铺满n,有三种方法,用1*2,1*1(2);
由于n-1的时候已经包括了n-2的时候 所以
和起来的公式为: a[n]=a[n-1]+2*a[n-2];
数据比较大,需要用高精度进行处理
代码如下:
#include <iostream> #include <cstring> using namespace std; void Bigadd(char a[],char b[],char c[]) { int n=strlen(a); int m=strlen(b); char temp; int i,j,e,d; for(i=0; i<m/2; i++) { temp=b[i]; b[i]=b[m-1-i]; b[m-1-i]=temp; } for(i=0; i<n/2; i++) { temp=a[i]; a[i]=a[n-1-i]; a[n-1-i]=temp; } d=0; e=0; for(i=0;i<n&&i<m;i++) { d=a[i]-'0'+b[i]-'0'+e; c[i]=d%10+'0'; e=d/10; } if(i==m) { for(;i<n;i++) { d=a[i]-'0'+e; c[i]=d%10+'0'; e=d/10; } } if(i==n) { for(;i<m;i++) { d=b[i]-'0'+e; c[i]=d%10+'0'; e=d/10; } } if(e) c[i++]=e+'0'; int t=i; for(i=0; i<t/2; i++) { temp=c[i]; c[i]=c[t-1-i]; c[t-1-i]=temp; } for(i=0; i<m/2; i++) { temp=b[i]; b[i]=b[m-1-i]; b[m-1-i]=temp; } for(i=0; i<n/2; i++) { temp=a[i]; a[i]=a[n-1-i]; a[n-1-i]=temp; } } int main(){ int n; while(cin>>n){ char a1[3000]="1"; char a2[3000]="3"; char a3[3000]="5"; char tmp1[3000],tmp3[3000],tmp[3000]; for(int i=4;i<=n;i++){ memset(tmp1,0,sizeof(tmp1)); memset(tmp3,0,sizeof(tmp3)); strcpy(tmp,a2); Bigadd(a2,tmp,tmp1); Bigadd(a3,tmp1,tmp3); strcpy(a2,a3); strcpy(a3,tmp3); } if(n==1||n==0){ cout<<"1"<<endl; continue; } if(n==2){ cout<<"3"<<endl; continue; } cout<<a3<<endl; } return 0; }