前言
在网上找的一些试题及延伸的一些问题,以选择题为主,主要是关于基础理论知识,同时给出自己联想到的一些问题。当然基础问题应当包含算法本身的过程和某些推导过程。比如:LR、SVM的推导。
试题
这次分享的试题较为简单,都是基础概念,无太多的延伸问题。
1. 下面哪个统计量可能大于1?
A. logloss
B. ROC AUC
C. 皮尔逊相关系数
答案:A
logloss:
取极限值。0 1 的分类问题,真值是为1,但预测为0,这样代入logloss其值为正无穷大。
2. 混淆矩阵可以不能用来评估下面哪类模型的表现?
A. 二元分类器
B. 多元分类器
C. 聚类算法
答案:C
混淆矩阵(confusion matrix)是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。与上一题中的ROC AUC紧密相连。
3. 下列哪个模型没有用到梯度?
A. GradientBoost
B. AdaBoost
C. XGBoost
答案:B
4. 正则化(regularization)的作用不包括以下哪个?
A. 防止过拟合
B. 去除噪点
C. 降低模型复杂度
答案:B
5. 卷积神经网络(Convolutional Neural Network)中通常包含卷积层和全链接层,它们的主要作用分别是
A. 进行分类、提取特征
B. 提取特征、进行分类
C. 提取特征、提取特征
答案:B