机器学习-机器学习试题(二)

前言

在网上找的一些试题及延伸的一些问题,以选择题为主,主要是关于基础理论知识,同时给出自己联想到的一些问题。当然基础问题应当包含算法本身的过程和某些推导过程。比如:LR、SVM的推导。

试题

这次分享的试题较为简单,都是基础概念,无太多的延伸问题。

1. 下面哪个统计量可能大于1?

   A. logloss
   B. ROC AUC
  C. 皮尔逊相关系数

答案:A

logloss:

   

取极限值。0 1 的分类问题,真值是为1,但预测为0,这样代入logloss其值为正无穷大。

常见损失函数总结

2. 混淆矩阵可以不能用来评估下面哪类模型的表现?


  A. 二元分类器
   B. 多元分类器
   C. 聚类算法

答案:C

混淆矩阵(confusion matrix)是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。与上一题中的ROC AUC紧密相连。

3. 下列哪个模型没有用到梯度?


   A. GradientBoost
   B. AdaBoost
   C. XGBoost

答案:B

4. 正则化(regularization)的作用不包括以下哪个?

   A. 防止过拟合
   B. 去除噪点
   C. 降低模型复杂度

答案:B

5. 卷积神经网络(Convolutional Neural Network)中通常包含卷积层和全链接层,它们的主要作用分别是


   A. 进行分类、提取特征
   B. 提取特征、进行分类
   C. 提取特征、提取特征

答案:B


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值