机器学习总结(一):常见的损失函数

这是博主的第一篇博客,mark一下,希望今后能够坚持下去。

博主是机器学习菜鸟,将来希望从事机器学习的工作,最近在整理机器学习的知识点,将这些总结的文字以博客的形式展现出来,一是便于复习,二是分享出来希望能对别人会有一点点帮助。

最近搜集了一些机器学习常见的面试问题,将问题和回答整理出来,做到有备无患。(随时进行补充)

  1. 常见的损失函数
  2. 梯度消失和梯度爆炸产生的原因
  3. SVM的原理
  4. RF,SVM和NN的优缺点
  5. 模型调优细节
  6. 如何防止过拟合
  7. Batch Normalization的思想是什么

常见的损失函数

通常机器学习每一个算法中都会有一个目标函数,算法的求解过程是通过对这个目标函数优化的过程。在分类或者回归问题中,通常使用损失函数(代价函数)作为其目标函数。损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的算法使用的损失函数不一样。
损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。通常表示为如下:

θ=argmin1Ni=1NL(yi,f(xi;θi))+λΦ(θ)

1. 0-1损失函数和绝对值损失函数
0-1损失是指,预测值和目标值不相等为1,否则为0:

L(Y,f(X))={ 1,Yf
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值