这是博主的第一篇博客,mark一下,希望今后能够坚持下去。
博主是机器学习菜鸟,将来希望从事机器学习的工作,最近在整理机器学习的知识点,将这些总结的文字以博客的形式展现出来,一是便于复习,二是分享出来希望能对别人会有一点点帮助。
最近搜集了一些机器学习常见的面试问题,将问题和回答整理出来,做到有备无患。(随时进行补充)
- 常见的损失函数
- 梯度消失和梯度爆炸产生的原因
- SVM的原理
- RF,SVM和NN的优缺点
- 模型调优细节
- 如何防止过拟合
- Batch Normalization的思想是什么
常见的损失函数
通常机器学习每一个算法中都会有一个目标函数,算法的求解过程是通过对这个目标函数优化的过程。在分类或者回归问题中,通常使用损失函数(代价函数)作为其目标函数。损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的算法使用的损失函数不一样。
损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。通常表示为如下:
θ∗=argmin1N∑i=1NL(yi,f(xi;θi))+λΦ(θ)
1. 0-1损失函数和绝对值损失函数
0-1损失是指,预测值和目标值不相等为1,否则为0:
L(Y,f(X))={
1,Y≠f