随机向量

联合分布

  • 随机向量
  • 随机向量的函数
  • 联合分布
    • 离散型: pij p i j ,
    • 连续型: 密度函数 p(x,y) p ( x , y ) 分布函数 F(x,y)=P(Xx,Yy) F ( x , y ) = P ( X ≤ x , Y ≤ y )
  • 非负性、次可加性、归一性
    p(x,y)=2F(x,y)xy p ( x , y ) = ∂ 2 F ( x , y ) ∂ x ∂ y

    p((X,Y)D)=Dp(x,y)dxdy p ( ( X , Y ) ∈ D ) = ∬ D p ( x , y ) d x d y

边缘分布

  • 边缘分布:联合分布的分量
  • 联合分布决定边缘分布,由联合分布积分得到

三项分布

p(x,y)=n!k1!k2!(nk1k2)!pk11pk22(1p1p2)nk1k2 p ( x , y ) = n ! k 1 ! k 2 ! ( n − k 1 − k 2 ) ! p 1 k 1 p 2 k 2 ( 1 − p 1 − p 2 ) n − k 1 − k 2

二维正态分布

  • 概率密度
    p(x,y)=12πσ1σ21ρ2e12(1ρ2)[(1μ1)/σ1)22ρ(xμ1)(xμ2)/σ1σ2+(xμ2/σ2)2] p ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e − 1 2 ( 1 − ρ 2 ) [ ( 1 − μ 1 ) / σ 1 ) 2 − 2 ρ ( x − μ 1 ) ( x − μ 2 ) / σ 1 σ 2 + ( x − μ 2 / σ 2 ) 2 ]
  • 边缘密度是一维正态密度 pX(x)N(μ1,σ21),pY(y)N(μ2,σ22) p X ( x ) ∼ N ( μ 1 , σ 1 2 ) , p Y ( y ) ∼ N ( μ 2 , σ 2 2 )
  • 二维正态分布X和Y相互独立的充要条件是 ρ=0 ρ = 0
  • X+YN(2μ,2σ2) X + Y ∼ N ( 2 μ , 2 σ 2 )

独立性

充要条件:

  • p(x,y)=pX(x)pY(y) p ( x , y ) = p X ( x ) p Y ( y )
  • P(X=xi,Y=yi)=P(X=xi)P(Y=yi) P ( X = x i , Y = y i ) = P ( X = x i ) P ( Y = y i )

函数的分布

  • Z=X+Y Z = X + Y 的分布
    pZ(z)=p(x,zx)dx p Z ( z ) = ∫ − ∞ ∞ p ( x , z − x ) d x
  • Z=X/Y Z = X / Y 的分布
    pZ(z)=|y|p(zy,y)dy p Z ( z ) = ∫ − ∞ ∞ | y | p ( z y , y ) d y
  • 可作变量替换的一般函数的分布
    x=x(u,v),y=y(u,v) x = x ( u , v ) , y = y ( u , v ) ,有
    q(u,v)=p[x(u,v),y(u,v)](x,y)(u,v) q ( u , v ) = p [ x ( u , v ) , y ( u , v ) ] | ∂ ( x , y ) ∂ ( u , v ) |
  • X,Y X , Y 相互独立,则 E(XY)=E(X)E(Y),D(X)=D(X)+D(Y) E ( X Y ) = E ( X ) E ( Y ) , D ( X ) = D ( X ) + D ( Y )
  • E[f(x,y)]=f(x,y)p(x,y)dxdy E [ f ( x , y ) ] = ∬ f ( x , y ) p ( x , y ) d x d y

协方差

  • 协方差 cov(X,Y)=E(XE(X)(YE(Y)) c o v ( X , Y ) = E ( X − E ( X ) ( Y − E ( Y ) )
  • |cov(X,Y)|2var(X)var(Y) | c o v ( X , Y ) | 2 ≤ v a r ( X ) ⋅ v a r ( Y )
  • 相关系数
    ρ=cov(X,Y)var(X)var(Y) ρ = c o v ( X , Y ) v a r ( X ) v a r ( Y )
  • X,Y X , Y 独立则系数为 0 0 X,Y线性相关则系数为 ±1 ± 1

n n 维分布

  • 分布函数,密度函数,边缘分布,独立性,多项分布,
  • 密度公式
    p((X1,,Xn)D)=Dp(x1,,xn)dx1dxn
    • 独立的充要条件:联合密度等于各个密度之积。
    • 期望,协方差矩阵,相关阵(相关系数的矩阵), n n 维正态分布,随机变量的函数
    • 函数分布公式
      F(y)=A(y)p(x1,,xn)dx1dxn
    • 均值公式
      E[f(x1,,xn)]=f(x1,,xn)p(x1,,xn)dx1dxn E [ f ( x 1 , ⋯ , x n ) ] = ∬ f ( x 1 , ⋯ , x n ) p ( x 1 , ⋯ , x n ) d x 1 ⋯ d x n

    次序统计量

    • X(k) X ( k ) 的分布
      FX(k)(x)=P[X(k)x]=n!(k1)!(nk)!F(x)0uk1(1u)nkdu F X ( k ) ( x ) = P [ X ( k ) ≤ x ] = n ! ( k − 1 ) ! ( n − k ) ! ∫ 0 F ( x ) u k − 1 ( 1 − u ) n − k d u
    • X(1),,X(n) X ( 1 ) , ⋯ , X ( n ) 的联合分布密度

      q(x1,,xn)={n!ni=1p(xi),x1<<xn0,else q ( x 1 , ⋯ , x n ) = { n ! ∏ i = 1 n p ( x i ) , x 1 < ⋯ < x n 0 , e l s e

      评论有问这个公式怎么证明,在此补充一下:

      P((X(1),,X(n))D)=P((X(1),,X(n))D,X(1)<X(2)<<X(n))=P({P((Xi1,,Xin)D,Xi1<Xi2<<Xin})=n!P((X1,,Xn)D,X1<X2<<Xn)=n!Dp(x1,,xn)I{x1<<xn}dx1dxn=Dn!ni=1p(xi)dx1dxn P ( ( X ( 1 ) , ⋯ , X ( n ) ) ∈ D ) = P ( ( X ( 1 ) , ⋯ , X ( n ) ) ∈ D , X ( 1 ) < X ( 2 ) < ⋯ < X ( n ) ) = P ( ∪ ∗ { P ( ( X i 1 , ⋯ , X i n ) ∈ D , X i 1 < X i 2 < ⋯ < X i n } ) = n ! P ( ( X 1 , ⋯ , X n ) ∈ D , X 1 < X 2 < ⋯ < X n ) = n ! ∬ D p ( x 1 , ⋯ , x n ) I { x 1 < ⋯ < x n } d x 1 ⋯ d x n = ∬ D n ! ∏ i = 1 n p ( x i ) d x 1 ⋯ d x n

      根据密度函数的定义, X(1),,X(n) X ( 1 ) , ⋯ , X ( n ) 的联合分布密度即为
      q(x1,,xn)={n!ni=1p(xi),x1<<xn0,else q ( x 1 , ⋯ , x n ) = { n ! ∏ i = 1 n p ( x i ) , x 1 < ⋯ < x n 0 , e l s e

      解释一下,
      第一个等号说的是该联合分布密度是连续函数,向量的X个分量存在相等的情况概率为0;
      第二个等号是说对于X个分量总可以给一个排序,排序的个数是n!个,每个排序对应一个可能成立的情况;
      第三个等号提取出n!;
      第四个等号用上述的密度公式将单个情况表示出来,最后用联合分布密度的定义得证。

    • (X(1),X(n)) ( X ( 1 ) , X ( n ) ) 的联合密度为

      q1(u1,u2)={n(n1)(F(u2)F(u1))n2p(u1)p(u2),u1<u20,else q 1 ( u 1 , u 2 ) = { n ( n − 1 ) ( F ( u 2 ) − F ( u 1 ) ) n − 2 p ( u 1 ) p ( u 2 ) , u 1 < u 2 0 , e l s e

    • 极差 ξ=X(n)X(1) ξ = X ( n ) − X ( 1 ) 的分布

      P(ξx)=n(F(x+u)F(u))n1p(u)du,x>0 P ( ξ ≤ x ) = n ∫ − ∞ ∞ ( F ( x + u ) − F ( u ) ) n − 1 p ( u ) d u , x > 0

    条件分布

    离散

    P(X=xi|Y=yj)=pijkpkj P ( X = x i | Y = y j ) = p i j ∑ k p k j

    连续
    pX|Y(x|y)=p(x,y)pY(y) p X | Y ( x | y ) = p ( x , y ) p Y ( y )

    条件期望

    离散

    E(X|Y=y)=ixiP(X=xi|Y=y) E ( X | Y = y ) = ∑ i x i P ( X = x i | Y = y )

    连续
    E(X|Y=y)=xpX|Y(x|y)dx=1pY(y)xp(x,y)dx E ( X | Y = y ) = ∫ − ∞ ∞ x p X | Y ( x | y ) d x = 1 p Y ( y ) ∫ − ∞ ∞ x p ( x , y ) d x

    定理(权期望公式,条件期望与期望的关系):
    E(X)=E(X|Y=y)pY(y)dy,pY(y)>0 E ( X ) = ∫ E ( X | Y = y ) p Y ( y ) d y , p Y ( y ) > 0

    离散类似
    Var(Y)=E(Var(Y|X))+Var(E(Y|X)) V a r ( Y ) = E ( V a r ( Y | X ) ) + V a r ( E ( Y | X ) )

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值