非刷题不足以言学习。
课程:PKU数学双学位——实变函数与泛函分析
授课:刘和平教授
教材:郭懋正《实变函数与泛函分析》
双学位的课面向非数学系的其他院系学生,总体要求较数学科学学院低。实变函数和泛函分析在数学系是两门单独的课,在双学位课程设置里合并为一个学期的内容。但是实变函数和泛函分析本身难度不小,想要掌握好这一部分内容非下一点力气是不行的。所谓“实变函数学十遍,泛函分析心犯寒”也。
本打算把所有的课后题都刷一遍,写一份答案,后来想把作业题都做一份答案,结果都是flag.现在没有心思和精力做这件事,姑且搁置了。
集合与运算
集合及其运算
设有集合 A,B,C,D ,满足 A∪B=C∪D ,证明:
(1)令 A1=A∩C,A2=A∩D ,则 A=A1∪A2 ;
(2)令 A∩C=∅,B∩D=∅ ,则 A=D,B=C .证:
(1) A1∪A2=(A∩C)∪(A∩D)=A∩(C∪D)=A∩(A∪B)=A(2) A=(A∩C)∪(A∩D)=∅∪(A∩D)=A∪D⇒D⊂A
D=(D∩A)∪(D∩B)=(D∩A)∪∅=A∩D⇒A⊂D
⇒A=D
同理可证 B=C
注:主要用到集合交并运算的分配律设 A,B,D⊂X ,求证:
B=(D∩A)c∩(Dc∪A)⇔Bc=D证:
B=====⇒(D∩A)c∩(Dc∪A)(Dc∪Ac)∩(Dc∪A)Dc∪(Ac∩A)Dc∪∅DcBc=D
注:主要用到摩根律和分配律设 A,B 是集合,定义 AΔB=(A∖B)∪(B∖A) 为 A 与
B 的对称差。证明对称差具有以下性质:AΔB=BΔA;AcΔBc=AΔB;AΔ(BΔC)=(AΔB)ΔC
并证明对于给定的集合 A 与B ,存在唯一的集合E,使得
EΔA=B证:
(1)(交换律) AΔB=(A∖B)∪(B∖A)=(B∖A)∪(A∖B)=BΔA (并运算的交换律)
(2)
映射
n维欧式空间 Rn
Lebegue测度
Lebesgue外侧度与可测集
Lebesgue可测函数
Lebesgue可测函数列的收敛性
Lebesgue积分
Lebesgue可测函数的积分
Lebesgue积分的极限定理
重积分与累次积分
Lp 空间
Lp 空间
L2 空间
(第1题) f∈M,c>0. 若对于任意的函数 g∈L2(E) ,有 ∥fg∥2≤c∥g∥2 ,试证明 f∈L∞(E) ,且 ∥f∥∞≤c .
proof
若 |{ x∈E:|f|>c}|=m(F)>0, 取 g=χF
则∥fg∥2==(∫E|f⋅χF|2dx)12(∫F|f|2dx)12>c(∫F12dx)12=c∥g∥2
矛盾,所以 m(F)=0 ,所以 |f|≤c,a.e.[E]
即 f∈L∞(E) ,且 ∥f∥∞≤c .(第5题)设 k(x,y)∈L2(Rn×Rn) ,对于 f∈L2(Rn) 证明下述积分
Tf(x)=∫Rnk(x,y)f(y)dy
有意义,且 Tf∈L2(Rn)proof
因为 k(x,y)∈L2(Rn×Rn) ,所以 k(x,y)∈L2(Rn) .
由Hölder不等式,Tf(x)=≤<∫Rnk(x,y)f(y)dy(∫Rnk2(x,y)dy)12∥f(y)∥∞
所以该积分有意义。
∥Tf(x)∥2≤≤=≤∫Rn⎛⎝(∫Rnk2(x,y)dy)12∥f(y)∥⎞⎠2dx∥f(y)