实变函数与泛函分析

非刷题不足以言学习。
课程:PKU数学双学位——实变函数与泛函分析
授课:刘和平教授
教材:郭懋正《实变函数与泛函分析》
双学位的课面向非数学系的其他院系学生,总体要求较数学科学学院低。实变函数和泛函分析在数学系是两门单独的课,在双学位课程设置里合并为一个学期的内容。但是实变函数和泛函分析本身难度不小,想要掌握好这一部分内容非下一点力气是不行的。所谓“实变函数学十遍,泛函分析心犯寒”也。
本打算把所有的课后题都刷一遍,写一份答案,后来想把作业题都做一份答案,结果都是flag.现在没有心思和精力做这件事,姑且搁置了。

集合与运算

集合及其运算

  1. 设有集合 A,B,C,D ,满足 AB=CD ,证明:
    (1)令 A1=AC,A2=AD ,则 A=A1A2
    (2)令 AC=,BD= ,则 A=D,B=C .

    证:
    (1) A1A2=(AC)(AD)=A(CD)=A(AB)=A

    (2) A=(AC)(AD)=(AD)=ADDA
    D=(DA)(DB)=(DA)=ADAD
    A=D
    同理可证 B=C
    注:主要用到集合交并运算的分配律

  2. A,B,DX ,求证:

    B=(DA)c(DcA)Bc=D

    证:

    B=====(DA)c(DcA)(DcAc)(DcA)Dc(AcA)DcDcBc=D

    注:主要用到摩根律分配律

  3. A,B 是集合,定义 AΔB=(AB)(BA) A B 的对称差。证明对称差具有以下性质:

    AΔB=BΔA;AcΔBc=AΔB;AΔ(BΔC)=(AΔB)ΔC

    并证明对于给定的集合 A B ,存在唯一的集合E,使得
    EΔA=B

    证:
    (1)(交换律) AΔB=(AB)(BA)=(BA)(AB)=BΔA (并运算的交换律)
    (2)

映射

n维欧式空间 Rn

Lebegue测度

Lebesgue外侧度与可测集

Lebesgue可测函数

Lebesgue可测函数列的收敛性

Lebesgue积分

Lebesgue可测函数的积分

Lebesgue积分的极限定理

重积分与累次积分

Lp 空间

Lp 空间

L2 空间

  1. (第1题) fM,c>0. 若对于任意的函数 gL2(E) ,有 fg2cg2 ,试证明 fL(E) ,且 fc .

    proof
    |{ xE:|f|>c}|=m(F)>0, g=χF

    fg2==(E|fχF|2dx)12(F|f|2dx)12>c(F12dx)12=cg2

    矛盾,所以 m(F)=0 ,所以 |f|c,a.e.[E]
    fL(E) ,且 fc .

  2. (第5题)设 k(x,y)L2(Rn×Rn) ,对于 fL2(Rn) 证明下述积分

    Tf(x)=Rnk(x,y)f(y)dy

    有意义,且 TfL2(Rn)

    proof
    因为 k(x,y)L2(Rn×Rn) ,所以 k(x,y)L2(Rn) .
    由Hölder不等式,

    Tf(x)=<Rnk(x,y)f(y)dy(Rnk2(x,y)dy)12f(y)

    所以该积分有意义。
    Tf(x)2=Rn(Rnk2(x,y)dy)12f(y)2dxf(y)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值