概率论基础知识整理☯ | 随机向量

一、二维随机向量及其分布

  • 随机向量: X ( e ) X(e) X(e) Y ( e ) Y(e) Y(e)是样本空间 Ω \Omega Ω上的两个随机变量,则 ( X ( e ) , Y ( e ) ) (X(e),Y(e)) (X(e),Y(e))称为 Ω \Omega Ω上的随机向量,简记 ( X , Y ) (X,Y) (X,Y)
  • 联合分布函数: F ( x , y ) = P { X ≤ x , Y ≤ y } . F(x,y)=P\{X\le x,Y\le y\}. F(x,y)=P{Xx,Yy}.几何表示为
  • 分布函数 F ( x , y ) F(x,y) F(x,y)基本性质 1 。 F ( x , y ) 是 变 量 x , y 的 不 减 函 数 , 对 于 任 意 固 定 y , 当 x 1 < x 2 时 , 有 F ( x 1 , y ) ≤ F ( x 2 , y ) ; 固 定 x 时 同 理 ; 1^。F(x,y)是变量x,y的不减函数,对于任意固定y,\\ 当x_1<x_2时,有F(x_1,y)\le F(x_2,y);固定x时同理; 1F(x,y)x,yyx1<x2F(x1,y)F(x2,y);x; 2 。 0 ≤ F ( x , y ) ≤ 1 , 对 于 固 定 的 y , 有 F ( − ∞ , y ) = 0 ; 对 于 固 定 的 x , 有 F ( x , − ∞ ) = 0 ; F ( − ∞ , + ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1. ( 可 通 过 几 何 图 形 理 解 ) 2^。0\le F(x,y)\le 1,对于固定的y,有F(-\infty,y)=0;\\ 对于固定的x,有F(x,-\infty)=0; F(-\infty,+\infty)=0,\\ F(+\infty,+\infty)=1.(可通过几何图形理解) 20F(x,y)1,yF(,y)=0;xF(x,)=0;F(,+)=0,F(+,+)=1.() 3 。 F ( x , y ) 关 于 x 和 y 是 右 连 续 的 , 即 F ( x , y ) = F ( x + 0 , y ) , F ( x , y ) = F ( x , y + 0 ) . 3^。F(x,y)关于x和y是右连续的,即\\ F(x,y)=F(x+0,y),F(x,y)=F(x,y+0). 3F(x,y)xyF(x,y)=F(x+0,y),F(x,y)=F(x,y+0).
  • 二维离散型随机变量:
  1. 分布律: P { X = x i , Y = y j } = p i j , i , j = 1 , 2 , 3 , … P\{X=x_i,Y=y_j\}=p_{ij},i,j=1,2,3,\ldots P{X=xi,Y=yj}=pij,i,j=1,2,3,(也可用图表表示)
  2. 分布函数: F ( x , y ) = P { X ≤ x , Y ≤ y } = ∑ x i ≤ x ∑ y j ≤ y p i j . F(x,y)=P\{X\le x,Y\le y\}=\sum\limits_{x_i\le x}\sum\limits_{y_j\le y}p_{ij}. F(x,y)=P{Xx,Yy}=xixyjypij.
  • 二维连续型随机变量:
  1. 分布函数: F ( x , y ) = P { X ≤ x , Y ≤ y } = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v . F(x,y)=P\{X\le x,Y\le y\}=\int^x_{-\infty}\int^y_{-\infty}f(u,v)dudv. F(x,y)=P{Xx,Yy}=xyf(u,v)dudv.其中 f ( x , y ) f(x,y) f(x,y) ( X , Y ) (X,Y) (X,Y)联合概率密度或概率密度。
  2. 部分性质: 1 。 ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1 ; 1^。\int^{+\infty}_{-\infty}\int^{+\infty}_{-\infty}f(x,y)dxdy=1; 1++f(x,y)dxdy=1; 2 。 若 f ( x , y ) 在 ( x , y ) 处 连 续 , 则 有 ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) . 2^。若f(x,y)在(x,y)处连续,则有\\ \frac{∂^2F(x,y)}{∂x∂y}=f(x,y). 2f(x,y)(x,y)xy2F(x,y)=f(x,y). 3 。 设 G 为 x O y 面 上 的 一 区 域 , 随 机 点 ( X , Y ) 落 入 G 中 的 概 率 为 P { ( X , Y ) ∈ G } = ∬ G f ( x , y ) d x d y . 3^。设G为xOy面上的一区域,随机点(X,Y)落入G中的概率为\\ P\{(X,Y)\in G\}=\iint\limits_Gf(x,y)dxdy. 3GxOy(X,Y)GP{(X,Y)G}=Gf(x,y)dxdy.
  • 均匀分布:密度函数为 f ( x , y ) = { 1 A , ( x , y ) ∈ G 0 , 其他 f(x,y)=\begin{cases} \frac{1}{A}, &\text{$(x,y)\in G$}\\\\ 0,&\text{其他} \end{cases} f(x,y)=A1,0,(x,y)G其他其中 A A A为区域 G G G的面积,则 ( X , Y ) (X,Y) (X,Y)服从均匀分布。
  • 二维正态分布:密度函数为 f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e x p { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } , − ∞ < x < + ∞ , − ∞ < y < + ∞ f(x,y)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}exp\{{-\frac{1}{2(1-\rho^2)}[\frac{(x-\mu_1)^2}{\sigma^2_1}-\frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma^2_2}]}\},\\ -\infty<x<+\infty,-\infty<y<+\infty f(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(xμ1)2σ1σ22ρ(xμ1)(yμ2)+σ22(yμ2)2]},<x<+,<y<+其中 σ 1 > 0 , σ 2 > 0 , − 1 < ρ < 1 \sigma_1>0,\sigma_2>0,-1<\rho<1 σ1>0,σ2>0,1<ρ<1,则称 ( X , Y ) (X,Y) (X,Y)为二维正态随机变量,记作 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X,Y)\sim N(\mu_1,\mu_2,\sigma^2_1,\sigma^2_2,\rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ)
  • 对于不同的 ρ \rho ρ有不同的二维正态分布,但它们的边缘分布却是一样的。

二、边缘分布

  • 边缘分布函数: F X ( x ) = P { X ≤ x } = P { X ≤ x , Y < + ∞ } = F ( x , + ∞ ) F Y ( y ) = P { Y ≤ y } = P { X < + ∞ , Y ≤ y } = F ( + ∞ , y ) F_X(x)=P\{X\le x\}=P\{X\le x,Y<+\infty\}=F(x,+\infty)\\ F_Y(y)=P\{Y\le y\}=P\{X<+\infty,Y\le y\}=F(+\infty,y) FX(x)=P{Xx}=P{Xx,Y<+}=F(x,+)FY(y)=P{Yy}=P{X<+,Yy}=F(+,y)其中 F ( x , y ) F(x,y) F(x,y) ( X , Y ) (X,Y) (X,Y)的联合分布函数。
  • 二维离散型随机变量的边缘分布:
  1. 边缘分布函数: F X ( x ) = F ( x , + ∞ ) = ∑ x i ≤ x ∑ j p i j F Y ( y ) = F ( + ∞ , y ) = ∑ i ∑ y j ≤ y p i j F_X(x)=F(x,+\infty)=\sum\limits_{x_i\le x}\sum\limits_jp_{ij}\\ F_Y(y)=F(+\infty,y)=\sum\limits_i\sum\limits_{y_j\le y}p_{ij} FX(x)=F(x,+)=xixjpijFY(y)=F(+,y)=iyjypij
  2. 边缘分布律: P { X = x i } = ∑ j p i j , i = 1 , 2 , 3 , … P { Y = y j } = ∑ i p i j , j = 1 , 2 , 3 , … P\{X=x_i\}=\sum\limits_jp_{ij},i=1,2,3,\ldots\\ P\{Y=y_j\}=\sum\limits_ip_{ij},j=1,2,3,\ldots P{X=xi}=jpij,i=1,2,3,P{Y=yj}=ipij,j=1,2,3,
  • 二维连续型随机变量的边缘分布
  1. 边缘分布函数: F X ( x ) = F ( x , + ∞ ) = ∫ − ∞ x [ ∫ − ∞ + ∞ f ( x , y ) d y ] d x F Y ( y ) = F ( + ∞ , y ) = ∫ − ∞ y [ ∫ − ∞ + ∞ f ( x , y ) d x ] d y F_X(x)=F(x,+\infty)=\int^x_{-\infty}[\int^{+\infty}_{-\infty}f(x,y)dy]dx\\ F_Y(y)=F(+\infty,y)=\int^y_{-\infty}[\int^{+\infty}_{-\infty}f(x,y)dx]dy FX(x)=F(x,+)=x[+f(x,y)dy]dxFY(y)=F(+,y)=y[+f(x,y)dx]dy
  2. 边缘密度函数(边缘分布密度): f X ( x ) = d F X ( x ) d x = ∫ − ∞ + ∞ f ( x , y ) d y f Y ( y ) = d F Y ( y ) d y = ∫ − ∞ + ∞ f ( x , y ) d x . f_X(x)=\frac{dF_X(x)}{dx}=\int^{+\infty}_{-\infty}f(x,y)dy\\ f_Y(y)=\frac{dF_Y(y)}{dy}=\int^{+\infty}_{-\infty}f(x,y)dx. fX(x)=dxdFX(x)=+f(x,y)dyfY(y)=dydFY(y)=+f(x,y)dx.

三、条件分布

  • 二维离散型随机变量的条件分布律: P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } , i = 1 , 2 , 3 , … P\{X=x_i|Y=y_j\}=\frac{P\{X=x_i,Y=y_j\}}{P\{Y=y_j\}},i=1,2,3,\ldots P{X=xiY=yj}=P{Y=yj}P{X=xi,Y=yj},i=1,2,3,其中 j j j固定,且 P { Y = y j } > 0 P\{Y=y_j\}>0 P{Y=yj}>0。同理有 P { Y = y j ∣ X = x i } = P { X = x i , Y = y j } P { X = x i } , j = 1 , 2 , 3 , … P\{Y=y_j|X=x_i\}=\frac{P\{X=x_i,Y=y_j\}}{P\{X=x_i\}},j=1,2,3,\ldots P{Y=yjX=xi}=P{X=xi}P{X=xi,Y=yj},j=1,2,3,
  • 二维连续型随机变量的条件分布:
  1. 条件分布函数:设对于任意固定的 ε > 0 \varepsilon>0 ε>0,有 P { y − ε < Y ≤ y + ε } > 0 P\{y-\varepsilon<Y\le y+\varepsilon\}>0 P{yε<Yy+ε}>0,若极限 lim ⁡ ε → 0 + P { X ≤ x ∣ y − ε < Y ≤ y + ε } = lim ⁡ ε → 0 + P { X ≤ x , y − ε < Y ≤ y + ε } P { y − ε < Y ≤ y + ε } \lim\limits_{\varepsilon\to0^+}P\{X\le x|y-\varepsilon<Y\le y+\varepsilon\}=\lim\limits_{\varepsilon\to0^+}\frac{P\{X\le x,y-\varepsilon<Y\le y+\varepsilon\}}{P\{y-\varepsilon<Y\le y+\varepsilon\}} ε0+limP{Xxyε<Yy+ε}=ε0+limP{yε<Yy+ε}P{Xx,yε<Yy+ε}存在,则该极限称为在 Y = y Y=y Y=y的条件下 X X X的条件分布函数,记作 P { X ≤ x ∣ Y = y } P\{X\le x|Y=y\} P{XxY=y} F X ∣ Y ( x ∣ y ) F_{X|Y}(x|y) FXY(xy)。条件分布函数也可表示为 F X ∣ Y ( x ∣ y ) = ∫ − ∞ x f ( u , y ) f Y ( y ) d u F_{X|Y}(x|y)=\int^x_{-\infty}\frac{f(u,y)}{f_Y(y)}du FXY(xy)=xfY(y)f(u,y)du其中 f Y ( y ) f_Y(y) fY(y) Y Y Y的边缘密度函数。同理有 F Y ∣ X ( y ∣ x ) = ∫ − ∞ y f ( x , v ) f X ( x ) d v . F_{Y|X}(y|x)=\int^y_{-\infty}\frac{f(x,v)}{f_X(x)}dv. FYX(yx)=yfX(x)f(x,v)dv.
  2. 条件分布密度: f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) , f Y ∣ X ( y ∣ x ) f ( x , y ) f X ( x ) . f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)},f_{Y|X}(y|x)\frac{f(x,y)}{f_X(x)}. fXY(xy)=fY(y)f(x,y),fYX(yx)fX(x)f(x,y).

四、随机变量的独立性

  • 对任意 x , y x,y x,y P { X ≤ x , Y ≤ y } = P { X ≤ x } P { Y ≤ y } P\{X\le x,Y\le y\}=P\{X\le x\}P\{Y\le y\} P{Xx,Yy}=P{Xx}P{Yy}则称 X , Y X,Y X,Y是相互独立的。
  • 二维离散性随机变量: X , Y X,Y X,Y是相互独立的,则分布律为 P { X ≤ x i , Y ≤ y j } = P { X ≤ x i } P { Y ≤ y j } , i , j = 1 , 2 , 3 , … P\{X\le x_i,Y\le y_j\}=P\{X\le x_i\}P\{Y\le y_j\},i,j=1,2,3,\ldots P{Xxi,Yyj}=P{Xxi}P{Yyj},i,j=1,2,3,
  • 二维连续型随机变量: X , Y X,Y X,Y是相互独立的,则所有 x , y x,y x,y都是相互独立的,概率密度为 f ( x , y ) = f X ( x ) f Y ( y ) . f(x,y)=f_X(x)f_Y(y). f(x,y)=fX(x)fY(y).

五、两个随机变量函数的分布

  • 二维离散型随机变量函数的分布:根据两个随机变量的联合分布律可直接得出。
  • 二维连续型随机变量函数的分布:
  1. 求密度函数的一般方法
    (1) 首先求出 Z = φ ( X , Y ) Z=\varphi(X,Y) Z=φ(X,Y)的分布函数 F Z ( z ) = P { Z ≤ z } = P { φ ( X , Y ) ≤ z } = P { ( X , Y ) ∈ G } = ∬ G f ( u , v ) d u d v F_Z(z)=P\{Z\le z\}=P\{\varphi(X,Y)\le z\}\\ =P\{(X,Y)\in G\}=\iint\limits_Gf(u,v) dudv FZ(z)=P{Zz}=P{φ(X,Y)z}=P{(X,Y)G}=Gf(u,v)dudv其中 f ( x , y ) f(x,y) f(x,y) ( X , Y ) (X,Y) (X,Y)的密度函数, G = { ( x , y ) ∣ φ ( x , y ) ≤ z } G=\{(x,y)|\varphi(x,y)\le z\} G={(x,y)φ(x,y)z}
    (2) 其次利用分布函数和密度函数的关系,对分布函数求导,求出密度函数 f Z ( z ) f_Z(z) fZ(z)
  2. Z = X + Y Z=X+Y Z=X+Y的分布:区域 G = { ( x , y ) ∣ x + y ≤ z } G=\{(x,y)|x+y\le z\} G={(x,y)x+yz},则分布函数为 F Z ( z ) = ∫ − ∞ + ∞ [ ∫ − ∞ z − y f ( x , y ) d x ] d y F_Z(z)=\int^{+\infty}_{-\infty}[\int^{z-y}_{-\infty}f(x,y)dx]dy FZ(z)=+[zyf(x,y)dx]dy固定 z , y z,y z,y,令 x = u − y x=u-y x=uy,则有 F Z ( z ) = ∫ − ∞ + ∞ [ ∫ − ∞ z f ( u − y , y ) d u ] d y = ∫ − ∞ z [ ∫ − ∞ + ∞ f ( u − y , y ) d y ] d u F_Z(z)=\int^{+\infty}_{-\infty}[\int^{z}_{-\infty}f(u-y,y)du]dy=\int^{z}_{-\infty}[\int^{+\infty}_{-\infty}f(u-y,y)dy]du FZ(z)=+[zf(uy,y)du]dy=z[+f(uy,y)dy]du根据分布函数和密度函数的关系,得到密度函数 f Z ( z ) = ∫ − ∞ + ∞ f ( z − y , y ) d y f_Z(z)=\int^{+\infty}_{-\infty}f(z-y,y)dy fZ(z)=+f(zy,y)dy由于 X , Y X,Y X,Y的对称性,可得 f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x f_Z(z)=\int^{+\infty}_{-\infty}f(x,z-x)dx fZ(z)=+f(x,zx)dx X , Y X,Y X,Y相互独立,则有 f Z ( z ) = ∫ − ∞ + ∞ f X ( z − y ) f Y ( y ) d y f Z ( z ) = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x f_Z(z)=\int^{+\infty}_{-\infty}f_X(z-y)f_Y(y)dy\\ f_Z(z)=\int^{+\infty}_{-\infty}f_X(x)f_Y(z-x)dx fZ(z)=+fX(zy)fY(y)dyfZ(z)=+fX(x)fY(zx)dx上面两个公式记为卷积,记作 f X ∗ f Y f_X*f_Y fXfY,即 f X ∗ f Y = ∫ − ∞ + ∞ f X ( z − y ) f Y ( y ) d y = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x f_X*f_Y=\int^{+\infty}_{-\infty}f_X(z-y)f_Y(y)dy=\int^{+\infty}_{-\infty}f_X(x)f_Y(z-x)dx fXfY=+fX(zy)fY(y)dy=+fX(x)fY(zx)dx
  3. Z = X Y Z=\frac{X}{Y} Z=YX的分布:区域 G = { ( x , y ) ∣ x y ≤ z } G=\{(x,y)|\frac{x}{y}\le z\} G={(x,y)yxz},则分布函数为 F Z ( z ) = ∫ − ∞ + ∞ [ ∫ − ∞ z y f ( x , y ) d x ] d y F_Z(z)=\int^{+\infty}_{-\infty}[\int^{zy}_{-\infty}f(x,y)dx]dy FZ(z)=+[zyf(x,y)dx]dy u = y , v = x / y u=y,v=x/y u=y,v=x/y,即 x = u v , y = u x=uv,y=u x=uv,y=u,雅可比式 J = ∣ v u 1 0 ∣ = − u J=\left| \begin{array}{cc} v & u \\\\ 1 & 0\end{array} \right|=-u J=v1u0=u则有 F Z ( z ) = ∫ − ∞ + ∞ d u ∫ − ∞ z f ( u v , u ) ∣ J ∣ d v = ∫ − ∞ z [ ∫ − ∞ + ∞ f ( u v , u ) ∣ u ∣ d u ] d v F_Z(z)=\int^{+\infty}_{-\infty}du\int^{z}_{-\infty}f(uv,u)|J|dv=\int^{z}_{-\infty}[\int^{+\infty}_{-\infty}f(uv,u)|u|du]dv FZ(z)=+duzf(uv,u)Jdv=z[+f(uv,u)udu]dv根据分布函数和密度函数的关系,得到密度函数 f Z ( z ) = ∫ − ∞ + ∞ f ( z u , u ) ∣ u ∣ d u f_Z(z)=\int^{+\infty}_{-\infty}f(zu,u)|u|du fZ(z)=+f(zu,u)udu X , Y X,Y X,Y相互独立,则有 f Z ( z ) = ∫ − ∞ + ∞ f X ( z u ) f Y ( u ) ∣ u ∣ d u f_Z(z)=\int^{+\infty}_{-\infty}f_X(zu)f_Y(u)|u|du fZ(z)=+fX(zu)fY(u)udu
  • M = m a x { X , Y } , N = m i n { X , Y } M=max\{X,Y\},N=min\{X,Y\} M=max{X,Y},N=min{X,Y}的分布:设 X , Y X,Y X,Y相互独立, M , N M,N M,N的分布函数分别为 F M ( z ) , F N ( z ) F_M(z),F_N(z) FM(z),FN(z)。由于 M ≤ z M\le z Mz相当于 X , Y ≤ z X,Y\le z X,Yz,又 X , Y X,Y X,Y相互独立,故有 F M ( z ) = P { M ≤ z } = P { X ≤ z , Y ≤ z } = P { X ≤ z } P { Y ≤ z } = F X ( z ) F Y ( z ) . F_M(z)=P\{M\le z\}=P\{X\le z,Y\le z\}\\ =P\{X\le z\}P\{Y\le z\}=F_X(z)F_Y(z). FM(z)=P{Mz}=P{Xz,Yz}=P{Xz}P{Yz}=FX(z)FY(z).同理有 F N ( z ) = P { N ≤ z } = 1 − P { N > z } = 1 − P { X > z , Y > z } = 1 − P { X > z } P { Y > z } = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] . F_N(z)=P\{N\le z\}=1-P\{N>z\}=1-P\{X>z,Y>z\}\\ =1-P\{X>z\}P\{Y>z\}=1-[1-F_X(z)][1-F_Y(z)]. FN(z)=P{Nz}=1P{N>z}=1P{X>z,Y>z}=1P{X>z}P{Y>z}=1[1FX(z)][1FY(z)].推广到 n n n个,即 M = m a x { X 1 , X 2 , … X n } , N = m i n { X 1 , X 2 , … X n } M=max\{X_1,X_2,\dots X_n\},N=min\{X_1,X_2,\dots X_n\} M=max{X1,X2,Xn},N=min{X1,X2,Xn} X 1 , X 2 , … X n X_1,X_2,\dots X_n X1,X2,Xn相互独立且有相同的分布函数 F ( x ) F(x) F(x),则有 F M ( z ) = [ F ( z ) ] n F N ( z ) = 1 − [ 1 − F ( z ) ] n . F_M(z)=[F(z)]^n\\ F_N(z)=1-[1-F(z)]^n. FM(z)=[F(z)]nFN(z)=1[1F(z)]n.
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值