<一>重温Hibernate many to many映射

项目做完了,测试组在在测试中,趁此机会回头看下hibernate,不看不知道一看吓一跳,好多地方全忘了。就重新复习了下。

多对多映射的总结:

下面是三张表,一个班级可以有多个老师,相应的一个老师也可以教多个班级。班级表和教师表通过中间表关联,就构成了多对多的关系。

班级表:

CREATE TABLE `tbl_classes` (`id` INT(11) NOT NULL,`class_name` VARCHAR(20) NULL DEFAULT NULL,PRIMARY KEY (`id`))

教师表:

CREATE TABLE `tbl_teacher` (`id` VARCHAR(255) NOT NULL,`teacher_name` VARCHAR(20) NULL DEFAULT NULL,PRIMARY KEY (`id`))

班级教师关联表: 

CREATE TABLE `tbl_teacher_classes` (
`teacher_id` INT(11) NULL DEFAULT NULL,
`class_id` INT(11) NULL DEFAULT NULL,
INDEX `FK_tbl_teacher_classes_tbl_teacher` (`teacher_id`),
INDEX `FK_tbl_teacher_classes_tbl_classes` (`class_id`),
CONSTRAINT `FK_tbl_teacher_classes_tbl_teacher` FOREIGN KEY (`teacher_id`) REFERENCES `tbl_teacher` (`id`) ON UPDATE CASCADE ON DELETE CASCADE,
CONSTRAINT `FK_tbl_teacher_classes_tbl_classes` FOREIGN KEY (`class_id`) REFERENCES `tbl_classes` (`id`) ON UPDATE CASCADE ON DELETE CASCADE
)


package wb.wk.review.bean;

import java.util.Set;

public class Classes {

private int id;

private String className;

private Set<Classes> classes;

//Getter and setter

}

 

public class Teacher {

private int id;

private String teacherName;

private Set<Classes> classes;

//Getter and setter

}

班级Xml映射:

<hibernate-mapping>

<class name="wb.wk.review.bean.Classes" table="tbl_classes">

<id name="id" column="id" type="java.lang.Integer"></id>

<property name="className" type="java.lang.String" column="class_name"/>

<set name="teacher" table="tbl_teacher_classes" cascade="all"  inverse="true" >

<key column="class_id"></key>

<many-to-many class="wb.wk.review.bean.Teacher" column="teacher_id"></many-to-many>

</set>

</class>

</hibernate-mapping>

教师Xml映射:

<hibernate-mapping>

<class name="wb.wk.review.bean.Teacher" table="tbl_teacher">

<id name="id" column="id" type="java.lang.Integer"></id>

<property name="teacherName" type="java.lang.String" column="teacher_name"/>

<set name="classes" table="tbl_teacher_classes" cascade="all">

<key column="teacher_id"></key>

<many-to-many class="wb.wk.review.bean.Classes" column="class_id"></many-to-many>

</set>

</class>

</hibernate-mapping>

 测试的main方法:

public static void main(String[] args) {

Session session=null;

Transaction tran=null;

try {

session=HibernateSessionFactory.getSession();

tran=session.beginTransaction();

Set<Teacher> setTeacher=new HashSet<Teacher>();

Teacher t1=new Teacher();

t1.setTeacherName("马老师");

setTeacher.add(t1);

//Teacher t2=new Teacher();

//t2.setTeacherName("张老师");

//setTeacher.add(t2);

Set<Classes> setClass=new HashSet<Classes>();

Classes c1=new Classes();

c1.setClassName("小一班");

setClass.add(c1);

//Classes c2=new Classes();

//c2.setClassName("大一班");

//setClass.add(c2);

标记1:

t1.setClasses(setClass);

session.save(t1);//此时需要在class xml中配inverse="true"

标记2:

c1.setTeacher(setTeacher);

session.save(c1);//此时需要在teacher xml中配inverse="true"

//session.merge(t2);

//session.merge(c1);

//session.merge(c2);

tran.commit();

} catch (HibernateException e) {

tran.rollback();

e.printStackTrace();

}finally{

session.flush();

session.close();

}

}

运行main,出现异常: 

org.hibernate.MappingException: An association from the table tbl_teacher_classes refers to an unmapped class: Classes

原来是<many-to-many class="wb.wk.review.bean.Teacher" column="teacher_id"></many-to-many>少了实体类的包路径,把xml红色部分加上就不报此异常的了。

又运行后,又出现个异常。下面异常信息:

Hibernate: 

    select  classes_.id, classes_.class_name as class2_0_ 

    from   tbl_classes classes_  where classes_.id=?

org.hibernate.NonUniqueObjectException: a different object with the same identifier value was already associated with the session: [wb.wk.review.bean.Classes#0]

这是应为我new了两个Classes 和两个Teacher.这四个对象目前全是游离状态,当我调用save()方法时就转成持久化状态了,而一个session中是不能有一个对象的双重copy的,解决办法调用merge()方法,会出现一条更新语句,或者注释掉。哈哈

 最后运行,出现下面的sql语句。

Hibernate: 

    Select classes_.id,  classes_.class_name as class2_0_ 

    From  tbl_classes classes_   where classes_.id=?

Hibernate: 

    insert  into tbl_teacher (teacher_name, id)  Values (?, ?)

Hibernate: 

    insert  into tbl_classes(class_name, id) values (?, ?)

Hibernate: 

    insert  into tbl_teacher_classes (teacher_id, class_id) values (?, ?)

 

出现上述sql语句,但是插入的数据不对,中间表外键全是0。原因:中间表需要设置主键。Teacher.xml和class.xml需要配置<generator class="identity"></generator>

 

虽然有插入语句,但是中间表的数据却不准确。检查发现少了inverse属性。

关于标记1:

为teacher添加inverse="true"这是因为反转后,数据的维护交给了class维护,所以修改main方法如下:

c1.setTeacher(setTeacher);

session.save(c1);//save的是班级对象

运行后出现:

Hibernate: 

    insert  into tbl_teacher (teacher_name, id)  Values (?, ?)

Hibernate: 

    insert  into tbl_classes(class_name, id) values (?, ?)

Hibernate: 

    insert  into tbl_teacher_classes (teacher_id, class_id) values (?, ?)

运行插入数据正确。

关于标记2:

把inverse="true"添加到class xml中,

t1.setClasses(setClass);

session.save(t1);//save的是教师对象

再次运行出现:

Hibernate: 

    insert  into tbl_teacher (teacher_name, id)  Values (?, ?)

Hibernate: 

    insert  into tbl_classes(class_name, id) values (?, ?)

Hibernate: 

    insert  into tbl_teacher_classes (teacher_id, class_id) values (?, ?)

数据插入也正确

 

总结:标记1和标记2说明;多对多中,数据的维护方在哪一方都行,如果A方设置inverse属性,B方就是数据维护方,B.set(A),保存B就行了。


 最后:其实多对多映射比较复杂,还有中方法就是转换成多对一映射,需要写一个TeacherClass中间类,做个xml映射,<many-to-one/>这个就简单多了。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值