POJ Nim(2068)

41 篇文章 0 订阅
9 篇文章 1 订阅

Description

Let's play a traditional game Nim. You and I are seated across a table and we have a hundred stones on the table (we know the number of stones exactly). We play in turn and at each turn, you or I can remove on to four stones from the heap. You play first and the one who removed the last stone loses.
In this game, you have a winning strategy. To see this, you first remove four stones and leave 96 stones. No matter how I play, I will end up with leaving 92 - 95 stones. Then you will in turn leave 91 stones for me (verify this is always possible). This way, you can always leave 5k+1 stones for me and finally I get the last stone, sigh. If we initially had 101 stones, on the other hand, I have a winning strategy and you are doomed to lose.

Let's generalize the game a little bit. First, let's make it a team game. Each team has n players and the 2n players are seated around the table, with each player having opponents at both sides. Turn around the table so the two teams play alternately. Second, let's vary the maximum number of stones each player can take. That is, each player has his/her own maximum number of stones he/she can take at each turn (The minimum is always one). So the game is asymmetric and may even be unfair.

In general, when played between two teams of experts, the outcome of a game is completely determined by the initial number of stones and the maximum number of stones each player can take at each turn. In other words, either team has a winning strategy.

You are the head-coach of a team. In each game, the umpire shows both teams the initial number of stones and the maximum number of stones each player can take at each turn. Your team plays first. Your job is, given those numbers, to instantaneously judge whether your team has a winning strategy.

Incidentally, there is a rumor that Captain Future and her officers of Hakodate-maru love this game, and they are killing their time playing it during their missions. You wonder where the stones are? Well, they do not have stones but do have plenty of balls in the fuel containers!

Input

The input is a sequence of lines, followed by the last line containing a zero. Each line except the last is a sequence of integers and has the following format.

n S M1 M2 . . . M2n

where n is the number of players in a team, S the initial number of stones, and Mi the maximum number of stones ith player can take. 1st, 3rd, 5th, ... players are your team's players and 2nd, 4th, 6th, ... the opponents. Numbers are separated by a single space character. You may assume 1 <= n <= 10, 1 <= Mi <= 16, and 1 <= S < 2^13.

题目大意

给你2n个人,两方各n个人,交叉坐,每个人可以取的石子有一个最大限制,总共有S颗石子,哪一方取了最后一颗石子就输了,问先取石子的这一方是否有必胜策略。

Output

The output should consist of lines each containing either a one, meaning your team has a winning strategy, or a zero otherwise.

Sample Input

1 101 4 4
1 100 4 4
3 97 8 7 6 5 4 3
0

Sample Output

0
1
1

 

题解

dp+博弈论。有两个要点:一个状态为必胜状态当且仅当它的后继状态至少有一个必败状态。一个状态为必败状态当且仅当它的后继状态全为必胜状态。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cstdlib>
#include<cmath>
using namespace std;
int n,m,a[22],f[22][10002];
int dfs(int x,int s)
{
	 if(x>2*n) x=1;
	 if(f[x][s]!=-1) return f[x][s];
	 for(int i=1;i<=a[x];i++)
	    {int t=s-i;
	 	 if(t<0) break;
	 	 int jg=dfs(x+1,t);
	 	 if(!jg) return f[x][s]=1;
	    }
	 return f[x][s]=0;
}
int main()
{
	while(scanf("%d",&n)&&n)
	   {scanf("%d",&m);
	    for(int i=1;i<=(n<<1);i++)
	       scanf("%d",&a[i]);
	    memset(f,-1,sizeof(f));
	    for(int i=1;i<=(n<<1);i++) f[i][0]=1;
	    int ans=dfs(1,m);
	    if(ans) printf("1\n");
	    else printf("0\n");
	   }
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值