BZOJ [HNOI2008]水平可见直线

Description

Input

第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi

Output

从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3
-1 0
1 0
0 0

Sample Output

1 2

题解

首先,若两条线斜率相等(a相等)则,b大的可以看清,b小的不能看清

其次,最终能看见的线组成的图形必像一个开口朝上的凸包,如图  :

反例如图(红色为正确,蓝色为错误):

对于三条线(已按斜率排序),若2能被看见,3与1的交点的横坐标(以下简称(3,1))必然比(2,1)大。否则2将不能被看到(画图可证)

所以先按斜率排序,再将最小的两条线入栈,然后依次处理每条线,然后像维护凸包一样即可。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
int n,zz=0;
bool ans[50002];
struct line
{double a,b;int w;} l[50002],q[50002];
bool kp(const line &x,const line &y)
{
	if(x.a==y.a&&x.b<y.b) return true;
	else if(x.a<y.a) return true;
	else return false;
}
double xj(line x,line y)
{return (y.b-x.b)/(x.a-y.a);}
void insert(line x)
{
	while(zz)
	   {if(x.a==q[zz].a) zz--;
		else if(zz>1&&xj(x,q[zz-1])<=xj(q[zz],q[zz-1]))
	       zz--;
	    else break ;
	   }
	q[++zz]=x;
}
void doit()
{
	for(int i=1;i<=n;i++) insert(l[i]);
	for(int i=1;i<=zz;i++) ans[q[i].w]=1;
    for(int i=1;i<=n;i++)
       if(ans[i]) printf("%d ",i);
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	   {scanf("%lf%lf",&l[i].a,&l[i].b);
	    l[i].w=i;
	   }
	sort(l+1,l+n+1,kp);
	doit();
	return 0;
}


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值