《数学之美》读后感

本文是《数学之美》的读后感,探讨了在机器学习中如何找到准确的模型,强调了统计方法在大数据处理中的优势。通过介绍优化过程,如梯度下降和决策树剪枝,阐述了模型改进的重要性。同时,提到了动态规划的概念以及分布式运算的价值。最后,文章触及了数学问题的可计算性边界和图灵机模型。
摘要由CSDN通过智能技术生成

今天终于把《数学之美》读完了,耗时近一个月,整个读完之后,再一想,似乎回想不起什么。结合正在看的《统计学习方法》,给个总结

现实世界中,并不是所以问题都有解,对于有解的问题,关键在于找准模型,模型越准确,则效果越好,就像是要找出空间中随机分布的一系列点的函数,函数穿过所有点,则拟合很好,反之拟合变弱。拟合好不一定泛化好(对测试数据预测效果),因此往往会做出一定的偏移,用于泛化。

如果得到大量数据,基于统计往往比基于规则更好。因为对于大量数据,规则往往极其复杂,人为添加规则,工作量巨大,而且容易出错。

要做优化,首先要定义一个函数对模型进行衡量(损失函数),接着对比优化前后该衡量值的大小,若混乱程度更小(损失更小、失误率更小),则该优化可以进行选取,否则,不可选取。
不断进行优化,直到处于一个可接受的程度,则优化完毕

对决策树进行优化,就是剪枝,减少深度。
梯度下降,也是对原有模型进行优化
随机梯度下降,只取一点,降低计算量
还有一种梯度下降,先步长更长,后步长更短,能更快,但计算量变大,因为计算二阶导。

对于大数据,布隆过滤器比哈希表更节省内存,不过需要白名单,因为有可能重复。哈希表大概50%利用率,布隆过滤器只需要哈希表的1/8到1/4。

分布式运算,能够利用更多机器同步运算,加快运算速度,但是关键在于将计算进行分布、结果整合。

以前一直不理解动态规划,现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值