Tensorflow: tf.add()

Tensorflow: tf.add()

1.基本用法: 单个数字和单个数字的简单相加。

import tensorflow as tf

x = tf.constant(2)
y = tf.constant(1)
z = tf.add(x,y)
with  tf.Session() as sess:
    print(sess.run(z))

输出:3

2.广播机制: 即按维度的相加

在这里插入图片描述
论文《BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation》中的 Context Embedding Block模块,将1x1xC的特征图和HxWxC的特征图进行相加,即采用广播机制的相加。

import tensorflow as tf

a = tf.constant([[[2,3]]])
b = tf.constant([[[2,3],
                [1,0,]],[[5,6],[3,2]],[[4,5],[1,8]]])
c = tf.add(a,b)
print(a) #Tensor("Const_2:0", shape=(1, 1, 2), dtype=int32)
print(b) #Tensor("Const_3:0", shape=(3, 2, 2), dtype=int32)
print(c) #Tensor("Add_3:0", shape=(3, 2, 2), dtype=int32)
with tf.Session() as sess:
    print(sess.run(c))

即1x1x2 + 3x2x2 = 3x2x2的输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Peanut_范

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值