L3-001. 凑零钱
韩梅梅喜欢满宇宙到处逛街。现在她逛到了一家火星店里,发现这家店有个特别的规矩:你可以用任何星球的硬币付钱,但是绝不找零,当然也不能欠债。韩梅梅手边有104枚来自各个星球的硬币,需要请你帮她盘算一下,是否可能精确凑出要付的款额。
输入格式:
输入第一行给出两个正整数:N(<=104)是硬币的总个数,M(<=102)是韩梅梅要付的款额。第二行给出N枚硬币的正整数面值。数字间以空格分隔。
输出格式:
在一行中输出硬币的面值 V1 <= V2 <= ... <= Vk,满足条件 V1 + V2 + ... + Vk = M。数字间以1个空格分隔,行首尾不得有多余空格。若解不唯一,则输出最小序列。若无解,则输出“No Solution”。
注:我们说序列{A[1], A[2], ...}比{B[1], B[2], ...}“小”,是指存在 k >= 1 使得 A[i]=B[i] 对所有 i < k 成立,并且 A[k] < B[k]。
输入样例1:8 9 5 9 8 7 2 3 4 1输出样例1:
1 3 5输入样例2:
4 8 7 2 4 3输出样例2:
No Solution
思路:
题目要求序列尽量小。那么我们取尽量多的数字,就可以保证数字尽量小。如果取的数字一样多,那么我们尽量让大的在后面,即当前取的尽量大,就能保证前面取的尽量小,为了实现这一点,需要先对数字进行排序。
可以用dp[i]来记录和为i时取到的最大数量。可以用滚动数组,从大到小遍历。
还需要用一个pre[i]数组记录取到i时所用的数字。
状态转移:
if(dp[j]<dp[j-a[i]]+1)
{
dp[j]=dp[j-a[i]]+1;
pre[j]=a[i];
}
else if(dp[j]==dp[j-a[i]]+1 && a[i]>pre[j])
{
pre[j]=a[i];
}
可是由于我们已经对a数组排序了,那么后面枚举的数字一定更大,于是就可以直接这样写:
if(dp[j]<=dp[j-a[i]]+1)
{
dp[j]=dp[j-a[i]]+1;
pre[j]=a[i];
}
需要注意的是dp数组需要初始化为-inf,dp[0]初始化为0。否则在状态转移时,会使取不到的数字dp转移为正值,显然是错的,初始化为负无穷,就几乎不可能转移为正值。
输出时可以考虑用递归进行输出。
代码:
#include<bits/stdc++.h>
using namespace std;
#define inf 0x3f3f3f3f
int n,m;
int dp[105],pre[105],a[10005];
void print(int p)
{
if(p==0) return;
print(p-pre[p]);
if(p-pre[p]) printf(" ");
printf("%d",pre[p]);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
sort(a,a+n);
memset(dp,-inf,sizeof dp);
dp[0]=0;
for(int i=0;i<n;i++)
{
for(int j=m;j>=a[i];j--)
{
if(dp[j]<=dp[j-a[i]]+1)
{
dp[j]=dp[j-a[i]]+1;
pre[j]=a[i];
}
}
}
if(dp[m]<=0) printf("No Solution");
else print(m);
printf("\n");
return 0;
}