剑指 Offer 42. 连续子数组的最大和-每日一题

一、题目

  输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
  要求时间复杂度为O(n)。

点击查看原题
难度级别:简单

二、思路

1)动态规划

  可以将问题抽象出来,dp[i]表示以i位置数字结尾的连续子数组最大和的值,那么dp[i+1]的值只依赖于dp[i],其中:

若dp[i]<0,则dp[i+1]=nums[i+1]
若dp[i]>0,则dp[i+1]=nums[i+1]+dp[i]

  记录dp数组中最大的值,就为本题答案
  由于后一个状态只依赖于前一个状态,可以将其空间复杂度优化为常数,使用preSum代表dp[i]即可

三、代码

1)动态规划

class Solution {
    public int maxSubArray(int[] nums) {
        int ans = Integer.MIN_VALUE;
        int preSum = 0;
        for (int num : nums) {
            if (preSum < 0) {
                preSum = num;
            } else {
                preSum += num;
            }
            ans = Math.max(preSum, ans);
        }
        return ans;
    }
}

  时间复杂度为O(n),空间复杂度为O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

佳鑫大大

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值