583. 两个字符串的删除操作-每日一题

一、题目

  给定两个单词 _word1 _和 word2,找到使得 _word1 _和 _word2 _相同所需的最小步数,每步可以删除任意一个字符串中的一个字符。

点击查看原题
难度级别: 中等

二、思路

1)动态规划

  该题可以将问题转化为寻找两个字符串中相同的最长字符序列
  让dp[i][j]word2[0, i-1]word2[0, j-1]相同最长字符序列长度,那么可以得到状态转移方程:
d p [ i ] [ j ] = { d p [ i − 1 ] [ j − 1 ] + 1 , w o r d 1 [ i ] = = w o r d 2 [ j ] m a x ( d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j ] ) , e l s e dp[i][j]=\left\{\begin{matrix} dp[i-1][j-1]+1,word1[i]==word2[j]\\ max(dp[i][j-1],dp[i-1][j]),else \end{matrix}\right. dp[i][j]={dp[i1][j1]+1word1[i]==word2[j]max(dp[i][j1],dp[i1][j])else
  由于状态只依赖于当前行和i-1行状态,可以优化为一维dp数组

三、代码

1)动态规划

class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        for (int i = 0; i < word1.length(); i++) {
            for (int j = 0; j < word2.length(); j++) {
                if (word1.charAt(i) == word2.charAt(j)) {
                    dp[i+1][j+1] = dp[i][j] + 1;
                } else {
                    dp[i+1][j+1] = Math.max(dp[i][j+1], dp[i+1][j]);
                }
            }
        }
        return word1.length() + word2.length() - 2*dp[word1.length()][word2.length()];
    }
}

  两个字符串长度分别为nm,时间复杂度为O(n*m),空间复杂度为O(n*m)
  优化空间复杂度后为:

class Solution {
    public int minDistance(String word1, String word2) {
        int[] dp = new int[word2.length() + 1];
        for (int i = 0; i < word1.length(); i++) {
            int cur = 0;	// 记录上一个,如果当前是j+1,那也就是dp[j]元素
            for (int j = 0; j < word2.length(); j++) {
                int leftTop = cur;
                cur = dp[j + 1];
                if (word1.charAt(i) == word2.charAt(j)) {
                    dp[j+1] = leftTop + 1;
                } else {
                    dp[j+1] = Math.max(dp[j+1], dp[j]);
                }
            }
        }
        return word1.length() + word2.length() - 2*dp[word2.length()];
    }
}

  两个字符串长度分别为nm,时间复杂度为O(n*m),空间复杂度为O(m)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

佳鑫大大

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值