一、题目
最初记事本上只有一个字符 ‘A’ 。你每次可以对这个记事本进行两种操作:
- Copy All(复制全部):复制这个记事本中的所有字符(不允许仅复制部分字符)。
- Paste(粘贴):粘贴 上一次 复制的字符。
给你一个数字 n ,你需要使用最少的操作次数,在记事本上输出 恰好 n 个 ‘A’ 。返回能够打印出 n 个 ‘A’ 的最少操作次数。
点击查看原题
难度级别: 中等
二、思路
1)动态规划
题中给出的操作,只能使用复制和粘贴两种操作,且每次复制都只能复制所有字符串
直观地想到,n
个字符,如果存在一个数字j
,使得n%j==0
,那么只需要复制一次+粘贴j长度的字符n/j
次就可以。也就是n=j*(n/j)
,观察本式子,可以发现,j
与n/j
都是n
的因数
让dp[i]
代表i
个字符最少需要进行的操作次数,那么需要循环从1
到i-1
,找到最小的dp[j]+i/j
优化:
由于j
与n/j
都是n
的因数,可以以sqrt(i)
作为分界线,每次进行两个运算,分别是dp[j]+i/j
和dp[i/j]+j
三、代码
1)动态规划
class Solution {
public int minSteps(int n) {
int[] dp = new int[n+1];
for (int i = 2; i <= n; i++) {
dp[i] = Integer.MAX_VALUE;
for (int j = 1; j <= i; j++) {
if (i % j == 0) {
dp[i] = Math.min(dp[i], dp[j] + i/j);
}
}
}
return dp[n];
}
}
时间复杂度为O(n^2)
,空间复杂度为O(n)
优化后:
class Solution {
public int minSteps(int n) {
int[] dp = new int[n+1];
for (int i = 2; i <= n; i++) {
dp[i] = Integer.MAX_VALUE;
for (int j = 1; j * j <= i; j++) {
if (i % j == 0) {
dp[i] = Math.min(dp[i], dp[j] + i/j);
dp[i] = Math.min(dp[i], dp[i/j] + j);
}
}
}
return dp[n];
}
}
时间复杂度为O(n*sqrt(n))
,空间复杂度为O(n)