原题是机器人走方格的问题:M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。
此问题很简单,就直接是C(M+N-2,M-1)即可,但是当M+N很大时,是无法直接求出C(M+N-2,M-1)的,所以专门总结了一下大数下组合数的求解方法。
求大数的阶乘,如果不精确的话可以用斯特林公式:
1、转换为对数式,lg(C(n+m,m))=lg((n+m)!/(n!*m!))=lg((n+m)!)-lg(n!)-lg(m!)=lg((m+1)(m+2)…(m+n))-lg(n!),将乘积化为加法运算。
// 对数法求C(n+m,m)
#include <iostream>
#include <cmath>
using namespace std;
typedef long long ll;
#define Mod 1000000009
ll Cnm(int n, int m)
{
double sum1=0, sum2=0;
ll res=(ll)1;
for(int i=1; i<=m; i++)
{
sum1+=(double)log(i);
sum2+=(double)log(n-m+i);
}
return (ll)exp(sum2-sum1)%Mod;
}
int main()
{
int n,m;
cin >> n >> m;
cout << Cnm(n+m,(m>n?n:m)) << endl;
system("pause");
return 0;
}
但是此方法依然不适用与n、m过大的情况,但比直接计算阶乘适用范围要广得多。
2、同样不适用n过大情况的大数组合计算方法还有利用杨辉三角公式求解,C(n+m,m)=C(n+m-1,m-1)+C(n+m-1,m),此公式证明很简单,展开拆分一项即可。
// 杨辉三角公式求C(n+m,m)
#include <iostream>
#include <vector>
using namespace std;
#define Mod 1000000009
typedef long